International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Anasuya Acharya

ORCID: 0000-0002-9111-5641

Publications

Year
Venue
Title
2025
PKC
Securely Instantiating `Half Gates' Garbling in the Standard Model
Garbling is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since the first construction by Yao (FOCS’82, ’86), a line of work has concerned itself with reducing the communication and computational complexity of that construction. One of the most efficient garbling schemes presently is the ‘Half Gates’ scheme by Zahur, Rosulek, and Evans (Eurocrypt’15). Despite its widespread adoption, the provable security of this scheme has been based on assumptions whose only instantiations are in idealized models. For example, in their original paper, Zahur, Rosulek, and Evans showed that hash functions satisfying a notion called circular correlation robustness (CCR) suffice for this task, and then proved that CCR secure hash functions can be instantiated in the random permutation model. In this work, we show how to securely instantiate the Half Gates scheme in the standard model. To this end, we first show how this scheme can be securely instantiated given a (family of) weak CCR hash function, a notion that we introduce. Furthermore, we show how a weak CCR hash function can be used to securely instantiate other efficient garbling schemes, namely the ones by Rosulek and Roy (Crypto’21) and Heath (Eurocrypt’24). Thus we believe this notion to be of independent interest. Finally, we construct such weak CCR hash functions using indistinguishability obfuscation and one-way functions. The security proof of this construction constitutes our main technical contribution. While our construction is not practical, it serves as a proof of concept supporting the soundness of these garbling schemes, which we regard to be particularly important given the recent initiative by NIST to standardize garbling, and the optimizations in Half Gates being potentially adopted.
2025
EUROCRYPT
On the Adaptive Security of Free-XOR-based Garbling Schemes in the Plain Model
Anasuya Acharya Karen Azari Chethan Kamath
A Garbling Scheme is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since its inception by Yao (FOCS'82, '86), optimizing the communication and computation complexities of securely garbling circuits has been an area of active research. One such optimization, and perhaps the most fundamental, is the `Free-XOR' technique (Kolesnikov and Schneider, ICALP'08) which allows XOR gates in a function garbling to not require representation, and therefore communication. Since then, several works have designed and analysed the security of schemes that adopt the Free-XOR optimisation. In particular: (1) Applebaum (JoC'16) proved that this can be securely instantiated assuming symmetric-key encryption satisfying a notion called RK-KDM security; and (2) Zahur, Rosulek and Evans (Eurocrypt'15) proposed the so-called `Half Gates' scheme, and proved that it can be instantiated assuming hash functions satisfying a notion called CCR security. Although both schemes have been proven selectively secure, prior work leaves it open to analyze whether they satisfy a stronger security notion -- adaptive security -- in the plain model. In this work, we formally show that the selective security of these two schemes \emph{cannot} be lifted to adaptive security under the same assumptions. To establish these barriers, we adopt techniques from the work of Kamath et al (Crypto'21), who proved similar negative results for Yao's garbling. We use that as a starting point and introduce new techniques tailored towards addressing Free-XOR-based schemes.
2024
CRYPTO
Malicious Security for SCALES: Outsourced Computation with Ephemeral Servers
SCALES (Small Clients And Larger Ephemeral Servers) model is a recently proposed model for MPC (Acharya et al., TCC 2022). While the SCALES model offers several attractive features for practical large-scale MPC, the result of Acharya et al. only offered semi-honest secure protocols in this model. We present a new efficient SCALES protocol secure against malicious adversaries, for general Boolean circuits. We start with the base construction of Acharya et al. and design and use a suite of carefully defined building blocks that may be of independent interest. The resulting protocol is UC-secure without honest majority, with a CRS and bulletin-board as setups, and allows publicly identifying deviations from correct execution.
2023
CRYPTO
Best of Both Worlds: Revisiting the Spymasters Double Agent Problem
This work introduces the notion of secure multiparty computation: MPC with fall-back security. Fall-back security for an $n$-party protocol is defined with respect to an adversary structure $\cZ$ wherein security is guaranteed in the presence of both a computationally unbounded adversary with adversary structure $\cZ$, and a computationally bounded adversary corrupting an arbitrarily large subset of the parties. This notion was considered in the work of Chaum (Crypto 89) via the Spymaster's double agent problem where he showed a semi-honest secure protocol for the honest majority adversary structure. Our first main result is a compiler that can transform any $n$-party protocol that is semi-honestly secure with statistical security tolerating an adversary structure $\cZ$ to one that (additionally) provides semi-honest fall-back security w.r.t $\cZ$. The resulting protocol has optimal round complexity, up to a constant factor, and is optimal in assumptions and the adversary structure. Our second result fully characterizes when malicious fall-back security is feasible. More precisely, we show that malicious fallback secure protocol w.r.t $\cZ$ exists if and only if $\cZ$ admits unconditional MPC against a semi-honest adversary (namely, iff $\cZ \in \cQ^2$).
2022
TCC
SCALES: MPC with Small Clients and Larger Ephemeral Servers
The recently proposed YOSO model is a groundbreaking approach to MPC, executable on a public blockchain, circumventing adaptive player corruption by hiding the corruption targets until they are worthless. Players are selected unpredictably from a large pool to perform MPC sub-tasks, in which each selected player sends a single message (and reveals their identity). While YOSO MPC has attractive asymptotic complexity, unfortunately, it is concretely prohibitively expensive due to the cost of its building blocks. We propose a modification to the YOSO model that preserves resilience to adaptive server corruption, but allows for much more efficient protocols. In SCALES (Small Clients And Larger Ephemeral Servers) only the servers facilitating the MPC computation are ephemeral (unpredictably selected and ``speak once''). Input providers (clients) publish problem instance and collect the output, but do not otherwise participate in computation. SCALES offers attractive features, and improves over YOSO in outsourcing MPC to a large pool of servers under adaptive corruption. We build SCALES from rerandomizable garbling schemes, which is a contribution of independent interest, with additional applications.