## CryptoDB

### Mirza Ahad Baig

#### Publications

**Year**

**Venue**

**Title**

2023

TCC

Efficiently Testable Circuits without Conductivity
Abstract

The notion of “efficiently testable circuits” (ETC) was recently put forward by Baig et al. (ITCS’23). Informally, an ETC compiler takes as input any Boolean circuit C and outputs a circuit/inputs
tuple (C′, T) where (completeness) C′ is functionally equivalent to C and (security) if C′ is tampered in some restricted way, then this can be detected as C′ will err on at least one input in the small test set T. The compiler of Baig et al. detects tampering even if the adversary can tamper with all wires in the compiled circuit. Unfortunately, the model requires a strong “conductivity” restriction: the compiled circuit has gates with fan-out up to 3, but wires can only be tampered in one way even if the have fan-out greater than one. In this paper, we solve the main open question from their work and construct an ETC compiler without this conductivity restriction. While Baig et al. use gadgets computing the AND and OR of particular subsets of the wires, our compiler computes inner products with random vectors. We slightly relax their security notion and only require that tampering
is detected with high probability over the choice of the randomness. Our compiler increases the size of the circuit by only a small constant factor. For a parameter λ (think λ ≤ 5), the number of additional input and output wires is |C|1/λ, while the number of test queries to detect an error
with constant probability is around 22λ.

2021

TCC

Grafting Key Trees: Efficient Key Management for Overlapping Groups
📺
Abstract

Key trees are often the best solution in terms of transmission cost and storage requirements for managing keys in a setting where a group needs to share a secret key, while being able to efficiently rotate the key material of users (in order to recover from a potential compromise, or to add or remove users). Applications include multicast encryption protocols like LKH (Logical Key Hierarchies) or group messaging like the current IETF proposal TreeKEM.
A key tree is a (typically balanced) binary tree, where each node is identified with a key: leaf nodes hold users’ secret keys while the root is the shared group key. For a group of size N, each user just holds log(N) keys (the keys on the path from its leaf to the root) and its entire key material can be rotated by broadcasting 2log(N) ciphertexts (encrypting each fresh key on the path under the keys of its parents). In this work we consider the natural setting where we have many groups with partially overlapping sets of users, and ask if we can find solutions where the cost of rotating a key is better than in the trivial
one where we have a separate key tree for each group.
We show that in an asymptotic setting (where the number m of groups is fixed while the number N of users grows) there exist more general key graphs whose cost converges to the cost of a single group, thus saving a factor linear in the number of groups over the trivial solution.
As our asymptotic “solution” converges very slowly and performs poorly on concrete examples, we propose an algorithm that uses a natural heuristic to compute a key graph for any given group structure. Our algorithm combines two greedy algorithms, and is thus very efficient: it first converts the group
structure into a “lattice graph”, which then is turned into a key graph by repeatedly applying the algorithm for constructing a Huffman code.
To better understand how far our proposal is from an optimal solution, we prove lower bounds on the update cost of continuous group-key agreement and multicast encryption in a symbolic model admitting (asymmetric) encryption, pseudorandom generators, and secret sharing as building blocks.

#### Coauthors

- Joël Alwen (1)
- Benedikt Auerbach (1)
- Mirza Ahad Baig (2)
- Suvradip Chakraborty (1)
- Stefan Dziembowski (1)
- Małgorzata Gałązka (1)
- Karen Klein (1)
- Tomasz Lizurej (1)
- Miguel Cueto Noval (1)
- Guillermo Pascual-Perez (1)
- Krzysztof Pietrzak (2)
- Michael Walter (1)