International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Karen Azari

Publications and invited talks

Year
Venue
Title
2025
PKC
Securely Instantiating `Half Gates' Garbling in the Standard Model
Garbling is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since the first construction by Yao (FOCS’82, ’86), a line of work has concerned itself with reducing the communication and computational complexity of that construction. One of the most efficient garbling schemes presently is the ‘Half Gates’ scheme by Zahur, Rosulek, and Evans (Eurocrypt’15). Despite its widespread adoption, the provable security of this scheme has been based on assumptions whose only instantiations are in idealized models. For example, in their original paper, Zahur, Rosulek, and Evans showed that hash functions satisfying a notion called circular correlation robustness (CCR) suffice for this task, and then proved that CCR secure hash functions can be instantiated in the random permutation model. In this work, we show how to securely instantiate the Half Gates scheme in the standard model. To this end, we first show how this scheme can be securely instantiated given a (family of) weak CCR hash function, a notion that we introduce. Furthermore, we show how a weak CCR hash function can be used to securely instantiate other efficient garbling schemes, namely the ones by Rosulek and Roy (Crypto’21) and Heath (Eurocrypt’24). Thus we believe this notion to be of independent interest. Finally, we construct such weak CCR hash functions using indistinguishability obfuscation and one-way functions. The security proof of this construction constitutes our main technical contribution. While our construction is not practical, it serves as a proof of concept supporting the soundness of these garbling schemes, which we regard to be particularly important given the recent initiative by NIST to standardize garbling, and the optimizations in Half Gates being potentially adopted.
2025
EUROCRYPT
On the Adaptive Security of Free-XOR-based Garbling Schemes in the Plain Model
A Garbling Scheme is a fundamental cryptographic primitive, with numerous theoretical and practical applications. Since its inception by Yao (FOCS'82, '86), optimizing the communication and computation complexities of securely garbling circuits has been an area of active research. One such optimization, and perhaps the most fundamental, is the `Free-XOR' technique (Kolesnikov and Schneider, ICALP'08) which allows XOR gates in a function garbling to not require representation, and therefore communication. Since then, several works have designed and analysed the security of schemes that adopt the Free-XOR optimisation. In particular: (1) Applebaum (JoC'16) proved that this can be securely instantiated assuming symmetric-key encryption satisfying a notion called RK-KDM security; and (2) Zahur, Rosulek and Evans (Eurocrypt'15) proposed the so-called `Half Gates' scheme, and proved that it can be instantiated assuming hash functions satisfying a notion called CCR security. Although both schemes have been proven selectively secure, prior work leaves it open to analyze whether they satisfy a stronger security notion -- adaptive security -- in the plain model. In this work, we formally show that the selective security of these two schemes \emph{cannot} be lifted to adaptive security under the same assumptions. To establish these barriers, we adopt techniques from the work of Kamath et al (Crypto'21), who proved similar negative results for Yao's garbling. We use that as a starting point and introduce new techniques tailored towards addressing Free-XOR-based schemes.
2025
TCC
Security Amplification of Threshold Signatures in the Standard Model
The current standardization calls for threshold signatures have highlighted the need for appropriate security notions providing security guarantees strong enough for broad application. To address this, Bellare et al. [Crypto'22] introduced a hierarchy of unforgeability notions for threshold signatures. Recently, Navot and Tessaro [Asiacrypt'24] introduced a new game-based definition of strong (one-more) unforgeability for threshold signatures, which however does not achieve Bellare's strongest level of security. Navot and Tessaro analyzed several existing schemes w.r.t. this security notion, but all positive results rely on idealized models. This is in contrast to the weaker security notion of (standard) unforgeability, for which standard-model constructions exist. This leaves open a fundamental question: is getting strong unforgeability fundamentally harder than standard unforgeability for threshold signatures? In this paper we bridge this gap, by showing a generic construction lifting any unforgeable threshold signature scheme to strong unforgeability. The building blocks of our construction can be instantiated in the standard model under standard assumptions. The achieved notion of strong unforgeability extends the definition of Navot and Tessaro to achieve the strongest level of security according to the hierarchy of Bellare et al. (following a recent classification of security notions for (blind) threshold signatures by Lehmann, Nazarian, and Özbay [Eurocrypt'25]). The starting point for our transformation is an existing construction for single-user signatures from chameleon hash functions by Steinfeld, Pieprzyk and Wang [RSA'07]. We first simplify their construction by relying on a stronger security notion for chameleon hash functions. The bulk of our technical contribution is then to translate this framework into the threshold setting. Towards this goal, we introduce a game-based definition for threshold chameleon hash functions (TCHF) and provide a construction of TCHF that is secure under DDH in the standard model. We believe that our new notion of TCHF might also be of independent interest.