## CryptoDB

### Marc Houben

#### ORCID: 0000-0003-2158-1353

#### Publications

**Year**

**Venue**

**Title**

2023

CRYPTO

Weak instances of class group action based cryptography via self-pairings
Abstract

In this paper we study non-trivial self-pairings with cyclic domains that are compatible with isogenies between elliptic curves oriented by an imaginary quadratic order $\mathcal{O}$. We prove that the order $m$ of such a self-pairing necessarily satisfies $m \mid \Delta_{\mathcal{O}}$ (and even $2m \mid \Delta_{\mathcal{O}} $ if $4 \mid \Delta_{\mathcal{O}}$ and $4m \mid \Delta_{\mathcal{O}}$ if $8 \mid \Delta_{\mathcal{O}}$) and is not a multiple of the field characteristic. Conversely, for each $m$ satisfying these necessary conditions, we construct a family of non-trivial cyclic self-pairings of order $m$ that are compatible with oriented isogenies, based on generalized Weil and Tate pairings.
As an application, we identify weak instances of class group actions on elliptic curves assuming the degree of the secret isogeny is known. More in detail, we show that if $m^2 \mid \Delta_{\mathcal{O}}$ for some prime power $m$ then given two primitively $\mathcal{O}$-oriented elliptic curves $(E, \iota)$ and $(E',\iota') = [\mathfrak{a}](E,\iota)$ connected by an unknown invertible ideal $\mathfrak{a} \subseteq \mathcal{O}$, we can recover $\mathfrak{a}$ essentially at the cost of a discrete logarithm computation in a group of order $m^2$, assuming the norm of $\mathfrak{a}$ is given and is smaller than $m^2$. We give concrete instances, involving ordinary elliptic curves over finite fields, where this turns into a polynomial time attack.
Finally, we show that these self-pairings simplify known results on the decisional Diffie-Hellman problem for class group actions on oriented elliptic curves.

2022

ASIACRYPT

Horizontal racewalking using radical isogenies
📺
Abstract

We address three main open problems concerning the use of radical isogenies, as presented by Castryck, Decru and Vercauteren at Asiacrypt 2020, in the computation of long chains of isogenies of fixed, small degree between elliptic curves over finite fields. Firstly, we present an interpolation method for finding radical isogeny formulae in a given degree N, which by-passes the need for factoring division polynomials over large function fields. Using this method, we are able to push the
range for which we have formulae at our disposal from N ≤ 13 to N ≤ 37. Secondly, using a combination of known techniques and ad-hoc manipulations, we derived optimized versions of these formulae for N ≤ 19, with some instances performing more than twice as fast as their counterparts from 2020. Thirdly, we solve the problem of understanding the correct choice of radical when walking along the surface between supersingular elliptic curves over Fp with p ≡ 7 mod 8; this is non-trivial for even N and was only settled for N = 4 by Onuki and Moriya at PKC 2022. We give a conjectural statement for all even N and prove it for N ≤ 14. The speed-ups obtained from these techniques are substantial: using 16-isogenies, the computation of long chains of 2-isogenies over 512-bit prime fields can be improved by a factor 3, and the previous implementation of CSIDH using radical isogenies can be sped up by about 12%.

#### Coauthors

- Wouter Castryck (2)
- Thomas Decru (1)
- Sam van Buuren (1)
- Simon-Philipp Merz (1)
- Marzio Mula (1)
- Frederik Vercauteren (2)