CryptoDB
Marzio Mula
ORCID: 0000-0002-5953-8724
Publications
Year
Venue
Title
2025
CRYPTO
More Efficient Isogeny Proofs of Knowledge via Canonical Modular Polynomials
Abstract
Proving knowledge of a secret isogeny has recently been proposed as a means to generate supersingular elliptic curves of unknown endomorphism ring, but is equally important for cryptographic protocol design as well as for real world deployments. Recently, Cong, Lai and Levin (ACNS'23) have investigated the use of general-purpose (non-interactive) zero-knowledge proof systems for proving the knowledge of an isogeny of degree $2^k$ between supersingular elliptic curves. In particular, their approach is to model this relation via a sequence of $k$ successive steps of a walk in the supersingular isogeny graph and to show that the respective $j$-invariants are roots of the second modular polynomial. They then arithmetize this relation and show that this approach, when compared to state-of-the-art tailor-made proofs of knowledge by Basso et al. (EUROCRYPT'23), gives a 3-10$\times$ improvement in proof and verification times, with comparable proof sizes.
In this paper we ask whether we can further improve the modular polynomial-based approach and generalize its application to primes ${\ell>2}$, as used in some recent isogeny-based constructions. We will answer these questions affirmatively, by designing efficient arithmetizations for each ${\ell \in \{2, 3, 5, 7, 13\}}$ that achieve an improvement over Cong, Lai and Levin of up to 48\%.
Our main technical tool and source of efficiency gains is to switch from classical modular polynomials to canonical modular polynomials. Adapting the well-known results on the former to the latter polynomials, however, is not straight-forward and requires some technical effort. We prove various interesting connections via novel use of resultant theory, and advance the understanding of canonical modular polynomials, which might be of independent interest.
2023
CRYPTO
Weak instances of class group action based cryptography via self-pairings
Abstract
In this paper we study non-trivial self-pairings with cyclic domains that are compatible with isogenies between elliptic curves oriented by an imaginary quadratic order $\mathcal{O}$. We prove that the order $m$ of such a self-pairing necessarily satisfies $m \mid \Delta_{\mathcal{O}}$ (and even $2m \mid \Delta_{\mathcal{O}} $ if $4 \mid \Delta_{\mathcal{O}}$ and $4m \mid \Delta_{\mathcal{O}}$ if $8 \mid \Delta_{\mathcal{O}}$) and is not a multiple of the field characteristic. Conversely, for each $m$ satisfying these necessary conditions, we construct a family of non-trivial cyclic self-pairings of order $m$ that are compatible with oriented isogenies, based on generalized Weil and Tate pairings.
As an application, we identify weak instances of class group actions on elliptic curves assuming the degree of the secret isogeny is known. More in detail, we show that if $m^2 \mid \Delta_{\mathcal{O}}$ for some prime power $m$ then given two primitively $\mathcal{O}$-oriented elliptic curves $(E, \iota)$ and $(E',\iota') = [\mathfrak{a}](E,\iota)$ connected by an unknown invertible ideal $\mathfrak{a} \subseteq \mathcal{O}$, we can recover $\mathfrak{a}$ essentially at the cost of a discrete logarithm computation in a group of order $m^2$, assuming the norm of $\mathfrak{a}$ is given and is smaller than $m^2$. We give concrete instances, involving ordinary elliptic curves over finite fields, where this turns into a polynomial time attack.
Finally, we show that these self-pairings simplify known results on the decisional Diffie-Hellman problem for class group actions on oriented elliptic curves.
Coauthors
- Wouter Castryck (1)
- Thomas den Hollander (1)
- Marc Houben (1)
- Sören Kleine (1)
- Sam van Buuren (1)
- Simon-Philipp Merz (1)
- Marzio Mula (2)
- Daniel Slamanig (1)
- Sebastian A. Spindler (1)
- Frederik Vercauteren (1)