International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Matteo Scarlata

ORCID: 0009-0000-6285-6259

Publications

Year
Venue
Title
2023
CRYPTO
When Messages are Keys: Is HMAC a dual-PRF?
In Internet security protocols including TLS 1.3, KEMTLS, MLS and Noise, HMAC is being assumed to be a dual-PRF, meaning a PRF not only when keyed conventionally (through its first input), but also when "swapped" and keyed (unconventionally) through its second (message) input. We give the first in-depth analysis of the dual-PRF assumption on HMAC. For the swap case, we note that security does not hold in general, but completely characterize when it does; we show that HMAC is swap-PRF secure if and only if keys are restricted to sets satisfying a condition called feasibility, that we give, and that holds in applications. The sufficiency is shown by proof and the necessity by attacks. For the conventional PRF case, we fill a gap in the literature by proving PRF security of HMAC for keys of arbitrary length. Our proofs are in the standard model, make assumptions only on the compression function underlying the hash function, and give good bounds in the multi-user setting. The positive results are strengthened through achieving a new notion of variable key-length PRF security that guarantees security even if different users use keys of different lengths, as happens in practice.
2023
RWC
Three Lessons From Threema: Analysis of a Secure Messenger
We provide an extensive cryptographic analysis of Threema, a Swiss-based encrypted messaging application with more than 10 million users and 7000 corporate customers. We present seven different attacks against the protocol in three different threat models. As one example, we present a cross-protocol attack which breaks authentication in Threema and which exploits the lack of proper key separation between different sub-protocols. As another, we demonstrate a compression-based side-channel attack that recovers users' long-term private keys through observation of the size of Threema encrypted backups. From our analysis, we draw three wider lessons for developers of secure protocols.