International Association for Cryptologic Research

International Association
for Cryptologic Research


Riccardo Zanotto


Rate-1 Fully Local Somewhere Extractable Hashing from DDH
Somewhere statistically binding (SSB) hashing allows us to sample a special hashing key such that the digest statistically binds the input at $m$ secret locations. This hash function is said to be somewhere extractable (SE) if there is an additional trapdoor that allows the extraction of the input bits at the $m$ locations from the digest. Devadas, Goyal, Kalai, and Vaikuntanathan (FOCS 22) introduced a variant of somewhere extractable hashing called rate-1 fully local SE hash functions. The rate-1 requirement states that the size of the digest is $m + \polyn(\lambda)$ (where $\lambda$ is the security parameter). The fully local property requires that for any index $i$, there is a ``very short" opening showing that $i$-th bit of the hashed input is equal to $b$ for some $b \in \bin$. The size of this opening is required to be independent of $m$ and in particular, this means that its size is independent of the size of the digest. Devadas et al. gave such a construction from Learning with Errors (LWE). In this work, we give a construction of a rate-1 fully local somewhere extractable hash function from Decisional Diffie-Hellman (DDH) and BARGs. Under the same assumptions, we give constructions of rate-1 BARG and RAM SNARG with partial input soundness whose proof sizes are only matched by prior constructions based on LWE.
Simple Two-Message OT in the Explicit Isogeny Model
Emmanuela Orsini Riccardo Zanotto
<p> In this work we study algebraic and generic models for group actions, and extend them to the universal composability (UC) framework of Canetti (FOCS 2001). We revisit the constructions of Duman et al. (PKC 2023) integrating the type-safe model by Zhandry (Crypto 2022), adapted to the group action setting, and formally define an algebraic action model (AAM). This model restricts the power of the adversary in a similar fashion to the algebraic group model (AGM). By imposing algebraic behaviour to the adversary and environment of the UC framework, we construct the UC-AAM. Finally, we instantiate UC-AAM with isogeny-based assumptions, in particular the CSIDH action with twists, obtaining the explicit isogeny model, UC-EI; we observe that, under certain assumptions, this model is "closer" to standard UC than the UC-AGM, even though there still exists an important separation. We demonstrate the utility of our definitions by proving UC-EI security for the passive-secure oblivious transfer protocol described by Lai et al. (Eurocrypt 2021), hence providing the first concretely efficient two-message isogeny-based OT protocol in the random oracle model against malicious adversaries. </p>