CryptoDB
Franklin Harding
Publications
Year
Venue
Title
2025
CRYPTO
Server-Aided Anonymous Credentials
Abstract
This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is helped by additional auxiliary information generated in an earlier (anonymous) interaction with the issuer. This model enables lightweight instantiations of publicly verifiable and multi-use ACs from pairing-free elliptic curves, which is important for compliance with existing national standards. A recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we have developed; however, it lacks formal security definitions and proofs.
In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs from the weaker notion of key-verification ACs (KVACs) and special types of oblivious issuance protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one achieves statistical anonymity with unforgeability under the Gap q-SDH assumption, and the other achieves computational anonymity and unforgeability under the DDH assumption.
2024
CIC
Unforgeability of Blind Schnorr in the Limited Concurrency Setting
Abstract
<p>Blind signature schemes enable a user to obtain a digital signature on a message from a signer without revealing the message itself. Among the most fundamental examples of such a scheme is blind Schnorr, but recent results show that it does not satisfy the standard notion of security against malicious users, One-More Unforgeability (OMUF), as it is vulnerable to the ROS attack. However, blind Schnorr does satisfy the weaker notion of sequential OMUF, in which only one signing session is open at a time, in the Algebraic Group Model (AGM) + Random Oracle Model (ROM), assuming the hardness of the Discrete Logarithm (DL) problem.</p><p>This paper serves as a first step towards characterizing the security of blind Schnorr in the limited concurrency setting. Specifically, we show that blind Schnorr satisfies OMUF when at most two signing sessions can be concurrently open (in the AGM+ROM, assuming DL). Our argument suggests that it is plausible that blind Schnorr satisfies OMUF for up to polylogarithmically many concurrent signing sessions. Our security proof involves interesting techniques from linear algebra and combinatorics. </p>
Coauthors
- Rutchathon Chairattana-Apirom (1)
- Franklin Harding (2)
- Anna Lysyanskaya (1)
- Stefano Tessaro (1)
- Jiayu Xu (1)