International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rutchathon Chairattana-Apirom

Publications and invited talks

Year
Venue
Title
2025
CRYPTO
Server-Aided Anonymous Credentials
Rutchathon Chairattana-Apirom Franklin Harding Anna Lysyanskaya Stefano Tessaro
This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is helped by additional auxiliary information generated in an earlier (anonymous) interaction with the issuer. This model enables lightweight instantiations of publicly verifiable and multi-use ACs from pairing-free elliptic curves, which is important for compliance with existing national standards. A recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we have developed; however, it lacks formal security definitions and proofs. In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs from the weaker notion of key-verification ACs (KVACs) and special types of oblivious issuance protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one achieves statistical anonymity with unforgeability under the Gap q-SDH assumption, and the other achieves computational anonymity and unforgeability under the DDH assumption.
2024
CRYPTO
Pairing-Free Blind Signatures from CDH Assumptions
Rutchathon Chairattana-apirom Stefano Tessaro Chenzhi Zhu
We present the first concurrently-secure blind signatures making black-box use of a pairing-free group for which unforgeability, in the random oracle model, can be proved {\em without} relying on the algebraic group model (AGM), thus resolving a long-standing open question. Prior pairing-free blind signatures without AGM proofs have only been proved secure for bounded concurrency, relied on computationally expensive non-black-box use of NIZKs, or had complexity growing with the number of signing sessions due to the use of boosting techniques. Our most efficient constructions rely on the chosen-target CDH assumption and can be seen as blind versions of signatures by Goh and Jarecki (EUROCRYPT '03) and Chevallier-Mames (CRYPTO '05). We also give a less efficient scheme with security based on (plain) CDH. The underlying signing protocols consist of four (in order to achieve regular unforgeability) or five moves (for strong unforgeability). All schemes are proved statistically blind in the random oracle model.
2024
ASIACRYPT
Partially Non-Interactive Two-Round Lattice-Based Threshold Signatures
Rutchathon Chairattana-Apirom Stefano Tessaro Chenzhi Zhu
This paper gives the first lattice-based two-round threshold signature based on standard lattice assumptions for which the first message is independent of the message being signed without relying on fully-homomorphic encryption, and our construction supports arbitrary thresholds. Our construction provides a careful instantiation of a generic threshold signature construction by Tessaro and Zhu (EUROCRYPT '23) based on specific linear hash functions, which in turns can be seen as a generalization of the FROST scheme by Komlo and Goldberg (SAC '20). Our reduction techniques are new in the context of lattice-based cryptography. Also, our scheme does not use any heavy tools, such as NIZKs or homomorphic trapdoor commitments.
2022
CRYPTO
PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance Cut-and-Choose and More 📺
Blind signature schemes are one of the best-studied tools for privacy-preserving authentication. Unfortunately, known constructions of provably secure blind signatures either rely on non-standard hardness assumptions, or require parameters that grow linearly with the number of concurrently issued signatures, or involve prohibitively inefficient general techniques such as general secure two-party computation. Recently, Katz, Loss and Rosenberg (ASIACRYPT'21) gave a technique that, for the security parameter n, transforms blind signature schemes secure for O(log n) concurrent executions of the blind signing protocol into ones that are secure for any poly(n) concurrent executions. This transform has two drawbacks that we eliminate in this paper: 1) the communication complexity of the resulting blind signing protocol grows linearly with the number of signing interactions; 2) the resulting schemes inherit a very loose security bound from the underlying scheme and, as a result, require impractical parameter sizes. In this work, we give an improved transform for obtaining a secure blind signing protocol tolerating any poly(n) concurrent executions from one that is secure for O(log n) concurrent executions. While preserving the advantages of the original transform, the communication complexity of our new transform only grows logarithmically with the number of interactions. Under the CDH and RSA assumptions, we improve on this generic transform in terms of concrete efficiency and give (1) a BLS-based blind signature scheme over a standard-sized group where signatures are of size roughly 3 KB and communication per signature is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind signature scheme with signatures and communication of roughly 9 KB and 8 KB, respectively.