International Association for Cryptologic Research

International Association
for Cryptologic Research


Lizhen Yang


Succinct Classical Verification of Quantum Computation 📺
We construct a classically verifiable succinct interactive argument for quantum computation (BQP) with communication complexity and verifier runtime that are poly-logarithmic in the runtime of the BQP computation (and polynomial in the security parameter). Our protocol is secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning with Errors (LWE). This is the first succinct argument for quantum computation in the plain model; prior work (Chia-Chung-Yamakawa, TCC ’20) requires both a long common reference string and non-black-box use of a hash function modeled as a random oracle. At a technical level, we revisit the framework for constructing classically verifiable quantum computation (Mahadev, FOCS ’18). We give a self-contained, modular proof of security for Mahadev’s protocol, which we believe is of independent interest. Our proof readily generalizes to a setting in which the verifier’s first message (which consists of many public keys) is compressed. Next, we formalize this notion of compressed public keys; we view the object as a generalization of constrained/programmable PRFs and instantiate it based on indistinguishability obfuscation. Finally, we compile the above protocol into a fully succinct argument using a (sufficiently composable) succinct argument of knowledge for NP. Using our framework, we achieve several additional results, including – Succinct arguments for QMA (given multiple copies of the witness), – Succinct non-interactive arguments for BQP (or QMA) in the quantum random oracle model, and – Succinct batch arguments for BQP (or QMA) assuming post-quantum LWE (without iO).
Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 📺
In this work, we show the hardness of finding a Nash equilibrium, a \PPAD-complete problem, based on the quasi-polynomial hardness of the decisional assumption on groups with bilinear maps introduced by Kalai, Paneth and Yang [STOC 2019]. Towards this goal, we construct an {\em unambiguous} and {\em updatable} delegation scheme under this assumption for deterministic computations running in super-polynomial time and polynomial space. This delegation scheme, which is of independent interest, is publicly verifiable and non-interactive in the common reference string (CRS) model. It is {\em unambiguous} meaning that it is hard to compute two different proofs for the same statement. It is {\em updatable} meaning that given a proof for the statement that a Turing machine $M$ reaches configuration $\conf_T$ in $T$ steps, one can {\em efficiently} generate a proof for the statement that $M$ reaches configuration $\conf_{T+1}$ in $T+1$ steps.