International Association for Cryptologic Research

International Association
for Cryptologic Research


Nadia Heninger

Affiliation: University of California, San Diego


Comparing the difficulty of factorization and discrete logarithm: a 240-digit experiment 📺
We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records. The last page of this paper also reports on the factorization of RSA-250.
CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks 📺
Intel Software Guard Extensions (SGX) allows users to perform secure computation on platforms that run untrusted software. To validate that the computation is correctly initialized and that it executes on trusted hardware, SGX supports attestation providers that can vouch for the user’s computation. Communication with these attestation providers is based on the Extended Privacy ID (EPID) protocol, which not only validates the computation but is also designed to maintain the user’s privacy. In particular, EPID is designed to ensure that the attestation provider is unable to identify the host on which the computation executes. In this work we investigate the security of the Intel implementation of the EPID protocol. We identify an implementation weakness that leaks information via a cache side channel. We show that a malicious attestation provider can use the leaked information to break the unlinkability guarantees of EPID. We analyze the leaked information using a lattice-based approach for solving the hidden number problem, which we adapt to the zero-knowledge proof in the EPID scheme, extending prior attacks on signature schemes.
Sliding Right into Disaster: Left-to-Right Sliding Windows Leak
It is well known that constant-time implementations of modular exponentiation cannot use sliding windows. However, software libraries such as Libgcrypt, used by GnuPG, continue to use sliding windows. It is widely believed that, even if the complete pattern of squarings and multiplications is observed through a side-channel attack, the number of exponent bits leaked is not sufficient to carry out a full key-recovery attack against RSA. Specifically, 4-bit sliding windows leak only 40% of the bits, and 5-bit sliding windows leak only 33% of the bits.In this paper we demonstrate a complete break of RSA-1024 as implemented in Libgcrypt. Our attack makes essential use of the fact that Libgcrypt uses the left-to-right method for computing the sliding-window expansion. We show for the first time that the direction of the encoding matters: the pattern of squarings and multiplications in left-to-right sliding windows leaks significantly more information about the exponent than right-to-left. We show how to extend the Heninger-Shacham algorithm for partial key reconstruction to make use of this information and obtain a very efficient full key recovery for RSA-1024. For RSA-2048 our attack is efficient for 13% of keys.

Program Committees

Crypto 2017
Crypto 2014
PKC 2014