International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Daniel J. Bernstein

Affiliation: University of Illinois at Chicago

Publications

Year
Venue
Title
2019
TCHES
Fast constant-time gcd computation and modular inversion
Daniel J. Bernstein Bo-Yin Yang
This paper introduces streamlined constant-time variants of Euclid’s algorithm, both for polynomial inputs and for integer inputs. As concrete applications, this paper saves time in (1) modular inversion for Curve25519, which was previously believed to be handled much more efficiently by Fermat’s method, and (2) key generation for the ntruhrss701 and sntrup4591761 lattice-based cryptosystems.
2019
EUROCRYPT
Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies 📺
Choosing safe post-quantum parameters for the new CSIDH isogeny-based key-exchange system requires concrete analysis of the cost of quantum attacks. The two main contributions to attack cost are the number of queries in hidden-shift algorithms and the cost of each query. This paper analyzes algorithms for each query, introducing several new speedups while showing that some previous claims were too optimistic for the attacker. This paper includes a full computer-verified simulation of its main algorithm down to the bit-operation level.
2017
EUROCRYPT
2017
CHES
Gimli : A Cross-Platform Permutation
This paper presents Gimli, a 384-bit permutation designed to achieve high security with high performance across a broad range of platforms, including 64-bit Intel/AMD server CPUs, 64-bit and 32-bit ARM smartphone CPUs, 32-bit ARM microcontrollers, 8-bit AVR microcontrollers, FPGAs, ASICs without side-channel protection, and ASICs with side-channel protection.
2017
CHES
Sliding Right into Disaster: Left-to-Right Sliding Windows Leak
It is well known that constant-time implementations of modular exponentiation cannot use sliding windows. However, software libraries such as Libgcrypt, used by GnuPG, continue to use sliding windows. It is widely believed that, even if the complete pattern of squarings and multiplications is observed through a side-channel attack, the number of exponent bits leaked is not sufficient to carry out a full key-recovery attack against RSA. Specifically, 4-bit sliding windows leak only 40% of the bits, and 5-bit sliding windows leak only 33% of the bits.In this paper we demonstrate a complete break of RSA-1024 as implemented in Libgcrypt. Our attack makes essential use of the fact that Libgcrypt uses the left-to-right method for computing the sliding-window expansion. We show for the first time that the direction of the encoding matters: the pattern of squarings and multiplications in left-to-right sliding windows leaks significantly more information about the exponent than right-to-left. We show how to extend the Heninger-Shacham algorithm for partial key reconstruction to make use of this information and obtain a very efficient full key recovery for RSA-1024. For RSA-2048 our attack is efficient for 13% of keys.
2016
EUROCRYPT
2016
PKC
The first 10 years of Curve25519
Daniel J. Bernstein
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EUROCRYPT
2014
EPRINT
2014
EPRINT
2014
EPRINT
2014
EPRINT
2014
ASIACRYPT
2014
CHES
2013
CHES
2013
ASIACRYPT
2013
ASIACRYPT
2013
FSE
Failures of secret-key cryptography
Daniel J. Bernstein
2012
CHES
NEON Crypto
Daniel J. Bernstein Peter Schwabe
2011
PKC
2011
CRYPTO
2011
CHES
2010
EPRINT
Starfish on Strike
Daniel J. Bernstein Peter Birkner Tanja Lange
This paper improves the price-performance ratio of ECM, the elliptic-curve method of integer factorization. In particular, this paper constructs "a = -1" twisted Edwards curves having Q-torsion group Z/2 x Z/4, Z/8, or Z/6 and having a known non-torsion point; demonstrates that, compared to the curves used in previous ECM implementations, some of the new curves are more effective at finding small primes despite being faster; and precomputes particularly effective curves for several specific sizes of primes.
2010
EPRINT
Wild McEliece
Daniel J. Bernstein Tanja Lange Christiane Peters
The original McEliece cryptosystem uses length-n codes over F_2 with dimension >=n-mt efficiently correcting t errors where 2^m>=n. This paper presents a generalized cryptosystem that uses length-n codes over small finite fields F_q with dimension >=n-m(q-1)t efficiently correcting floor(qt/2) errors where q^m>=n. Previously proposed cryptosystems with the same length and dimension corrected only floor((q-1)t/2) errors for q>=3. This paper also presents list-decoding algorithms that efficiently correct even more errors for the same codes over F_q. Finally, this paper shows that the increase from floor((q-1)t/2) errors to more than floor(qt/2) errors allows considerably smaller keys to achieve the same security level against all known attacks.
2010
EPRINT
Type-II Optimal Polynomial Bases
Daniel J. Bernstein Tanja Lange
In the 1990s and early 2000s several papers investigated the relative merits of polynomial-basis and normal-basis computations for $\F_{2^n}$. Even for particularly squaring-friendly applications, such as implementations of Koblitz curves, normal bases fell behind in performance unless a type-I normal basis existed for $\F_{2^n}$. In 2007 Shokrollahi proposed a new method of multiplying in a type-II normal basis. Shokrollahi's method efficiently transforms the normal-basis multiplication into a single multiplication of two size-$(n+1)$ polynomials. This paper speeds up Shokrollahi's method in several ways. It first presents a simpler algorithm that uses only size-$n$ polynomials. It then explains how to reduce the transformation cost by dynamically switching to a `type-II optimal polynomial basis' and by using a new reduction strategy for multiplications that produce output in type-II polynomial basis. As an illustration of its improvements, this paper explains in detail how the multiplication overhead in Shokrollahi's original method has been reduced by a factor of $1.4$ in a major cryptanalytic computation, the ongoing attack on the ECC2K-130 Certicom challenge. The resulting overhead is also considerably smaller than the overhead in a traditional low-weight-polynomial-basis approach. This is the first state-of-the-art binary-elliptic-curve computation in which type-II bases have been shown to outperform traditional low-weight polynomial bases.
2009
EUROCRYPT
2009
CRYPTO
Batch Binary Edwards
Daniel J. Bernstein
2008
EUROCRYPT
2008
EPRINT
Twisted Edwards Curves
This paper introduces ``twisted Edwards curves,'' a generalization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and shows that twisted Edwards curves save time for many curves that were already expressible as Edwards curves.
2008
EPRINT
ECM using Edwards curves
This paper introduces GMP-EECM, a fast implementation of the elliptic-curve method of factoring integers. GMP-EECM is based on, but faster than, the well-known GMP-ECM software. The main changes are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use twisted inverted Edwards coordinates; (3) use signed-sliding-window addition chains; (4) batch primes to increase the window size; (5) choose curves with small parameters $a,d,X_1,Y_1,Z_1$; (6) choose curves with larger torsion.
2008
EPRINT
New AES software speed records
Daniel J. Bernstein Peter Schwabe
This paper presents new speed records for AES software,taking advantage of (1) architecture-dependent reduction of instructions used to compute AES and (2) microarchitecture-dependent reduction of cycles used for those instructions. A wide variety of common CPU architectures---amd64, ppc32, sparcv9, and x86---are discussed in detail, along with several specific microarchitectures.
2008
CHES
2008
EPRINT
Binary Edwards Curves
Daniel J. Bernstein Tanja Lange Reza Rezaeian Farashahi
This paper presents a new shape for ordinary elliptic curves over fields of characteristic 2. Using the new shape, this paper presents the first complete addition formulas for binary elliptic curves, i.e., addition formulas that work for all pairs of input points, with no exceptional cases. If n >= 3 then the complete curves cover all isomorphism classes of ordinary elliptic curves over F_2^n. This paper also presents dedicated doubling formulas for these curves using 2M + 6S + 3D, where M is the cost of a field multiplication, S is the cost of a field squaring, and D is the cost of multiplying by a curve parameter. These doubling formulas are also the first complete doubling formulas in the literature, with no exceptions for the neutral element, points of order 2, etc. Finally, this paper presents complete formulas for differential addition, i.e., addition of points with known difference. A differential addition and doubling, the basic step in a Montgomery ladder, uses 5M + 4S + 2D when the known difference is given in affine form.
2008
EPRINT
Attacking and defending the McEliece cryptosystem
Daniel J. Bernstein Tanja Lange Christiane Peters
This paper presents several improvements to Stern's attack on the McEliece cryptosystem and achieves results considerably better than Canteaut et al. This paper shows that the system with the originally proposed parameters can be broken in just 1400 days by a single 2.4GHz Core 2 Quad CPU,or 7 days by a cluster of 200 CPUs. This attack has been implemented and is now in progress. This paper proposes new parameters for the McEliece and Niederreiter cryptosystems achieving standard levels of security against all known attacks. The new parameters take account of the improved attack; the recent introduction of list decoding for binary Goppa codes; and the possibility of choosing code lengths that are not a power of 2. The resulting public-key sizes are considerably smaller than previous parameter choices for the same level of security.
2008
EPRINT
ECM on Graphics Cards
This paper reports record-setting performance for the elliptic-curve method of integer factorization: for example, 926.11 curves/second for ECM stage 1 with B1=8192 for 280-bit integers on a single PC.The state-of-the-art GMP-ECM software handles 124.71 curves/second for ECM stage 1 with B1=8192 for 280-bit integers using all four cores of a 2.4 GHz Core 2 Quad Q6600. The extra speed takes advantage of extra hardware,specifically two NVIDIA GTX 295 graphics cards,using a new ECM implementation introduced in this paper.Our implementation uses Edwards curves, relies on new parallel addition formulas, and is carefully tuned for the highly parallel GPU architecture.On a single GTX 295 the implementation performs 41.88 million modular multiplications per second for a general 280-bit modulus.GMP-ECM, using all four cores of a Q6600, performs 13.03 million modular multiplications per second. This paper also reports speeds on other graphics processors: for example, 2414 280-bit elliptic-curve scalar multiplications per second on an older NVIDIA 8800 GTS (G80), again for a general 280-bit modulus.For comparison, the CHES 2008 paper ``Exploiting the Power of GPUs for Asymmetric Cryptography'' reported 1412 elliptic-curve scalar multiplications per second on the same graphics processor despite having fewer bits in the scalar (224 instead of 280), fewer bits in the modulus (224 instead of 280), and a special modulus (2^{224}-2^{96}+1).
2007
ASIACRYPT
2007
FSE
2007
EPRINT
Inverted Edwards coordinates
Daniel J. Bernstein Tanja Lange
Edwards curves have attracted great interest for several reasons. When curve parameters are chosen properly, the addition formulas use only $10M+1S$. The formulas are {\it strongly unified}, i.e., work without change for doublings; even better, they are {\it complete}, i.e., work without change for all inputs. Dedicated doubling formulas use only $3M+4S$, and dedicated tripling formulas use only $9M+4S$. This paper introduces {\it inverted Edwards coordinates}. Inverted Edwards coordinates $(X_1:Y_1:Z_1)$ represent the affine point $(Z_1/X_1,Z_1/Y_1)$ on an Edwards curve; for comparison, standard Edwards coordinates $(X_1:Y_1:Z_1)$ represent the affine point $(X_1/Z_1,Y_1/Z_1)$. This paper presents addition formulas for inverted Edwards coordinates using only $9M+1S$. The formulas are not complete but still are strongly unified. Dedicated doubling formulas use only $3M+4S$, and dedicated tripling formulas use only $9M+4S$. Inverted Edwards coordinates thus save $1M$ for each addition, without slowing down doubling or tripling.
2007
EPRINT
Optimizing double-base elliptic-curve single-scalar multiplication
This paper analyzes the best speeds that can be obtained for single-scalar multiplication with variable base point by combining a huge range of options: ? many choices of coordinate systems and formulas for individual group operations, including new formulas for tripling on Edwards curves; ? double-base chains with many different doubling/tripling ratios, including standard base-2 chains as an extreme case; ? many precomputation strategies, going beyond Dimitrov, Imbert, Mishra (Asiacrypt 2005) and Doche and Imbert (Indocrypt 2006). The analysis takes account of speedups such as S-M tradeoffs and includes recent advances such as inverted Edwards coordinates. The main conclusions are as follows. Optimized precomputations and triplings save time for single-scalar multiplication in Jacobian coordinates, Hessian curves, and tripling-oriented Doche/Icart/Kohel curves. However, even faster single-scalar multiplication is possible in Jacobi intersections, Edwards curves, extended Jacobi-quartic coordinates, and inverted Edwards coordinates, thanks to extremely fast doublings and additions; there is no evidence that double-base chains are worthwhile for the fastest curves. Inverted Edwards coordinates are the speed leader.
2007
EPRINT
Analysis and optimization of elliptic-curve single-scalar multiplication
Daniel J. Bernstein Tanja Lange
Let $P$ be a point on an elliptic curve over a finite field of large characteristic. Exactly how many points $2P,3P,5P,7P,9P,\ldots,mP$ should be precomputed in a sliding-window computation of $nP$? Should some or all of the points be converted to affine form, and at which moments during the precomputation should these conversions take place? Exactly how many field multiplications are required for the resulting computation of $nP$? The answers depend on the size of $n$, the $\inversions/\mults$ ratio, the choice of curve shape, the choice of coordinate system, and the choice of addition formulas. This paper presents answers that, compared to previous analyses, are more carefully optimized and cover a much wider range of situations.
2006
PKC
2005
EUROCRYPT
2005
FSE
1999
JOFC

Program Committees

CHES 2019
FSE 2019
CHES 2018
Asiacrypt 2018
CHES 2017
CHES 2016
FSE 2015
Asiacrypt 2015
CHES 2015
FSE 2014
Asiacrypt 2014
CHES 2014
CHES 2013
CHES 2012
Eurocrypt 2011
CHES 2011
CHES 2010
FSE 2010
CHES 2009
Asiacrypt 2009
FSE 2009
Asiacrypt 2008
CHES 2008