International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ivica Nikolić

Affiliation: National University of Singapore, Singapore

Publications

Year
Venue
Title
2017
ASIACRYPT
2016
FSE
2016
ASIACRYPT
2016
TOSC
Invariant Subspace Attack Against Midori64 and The Resistance Criteria for S-box Designs
We present an invariant subspace attack on the block cipher Midori64, proposed at Asiacrypt 2015. Our analysis shows that Midori64 has a class of 232 weak keys. Under any such key, the cipher can be distinguished with only a single chosen query, and the key can be recovered in 216 time with two chosen queries. As both the distinguisher and the key recovery have very low complexities, we confirm our analysis by implementing the attacks. Some tweaks of round constants make Midori64 more resistant to the attacks, but some lead to even larger weak-key classes. To eliminate the dependency on the round constants, we investigate alternative S-boxes for Midori64 that provide certain level of security against the found invariant subspace attacks, regardless of the choice of the round constants. Our search for S-boxes is enhanced with a dedicated tool which evaluates the depth of any given 4-bit S-box that satisfies certain design criteria. The tool may be of independent interest to future S-box designs.
2016
TOSC
Meet-in-the-Middle Attacks on Classes of Contracting and Expanding Feistel Constructions
We show generic attacks on unbalanced Feistel ciphers based on the meet-in-the-middle technique. We analyze two general classes of unbalanced Feistel structures, namely contracting Feistels and expanding Feistels. In both of the cases, we consider the practical scenario where the round functions are keyless and known to the adversary. In the case of contracting Feistels with 4 branches, we show attacks on 16 rounds when the key length k (in bits) is as large as the block length n (in bits), and up to 24 rounds when k = 2n. In the case of expanding Feistels, we consider two scenarios: one, where different nonlinear functions without particular structures are used in the round function, and a more practical one, where a single nonlinear is used but different linear functions are introduced in the state update. In the former case, we propose generic attacks on 13 rounds when k = n, and up to 21 rounds when k = 2n. In the latter case, 16 rounds can be attacked for k = n, and 24 rounds for k = 2n.
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
EPRINT
2015
FSE
2015
FSE
2015
ASIACRYPT
2014
EPRINT
2014
JOFC
2014
ASIACRYPT
2014
ASIACRYPT
2014
ASIACRYPT
2013
FSE
2013
FSE
2013
FSE
2011
FSE
2011
FSE
2011
ASIACRYPT
2010
EPRINT
Automatic Search for Related-Key Diff erential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others
Alex Biryukov Ivica Nikolić
While di fferential behavior of modern ciphers in a single secret key scenario is relatively well understood, and simple techniques for computation of security lower bounds are readily available, the security of modern block ciphers against related-key attacks is still very ad hoc. In this paper we make a first step towards provable security of block ciphers against related-key attacks by presenting an efficient search tool for finding diff erential characteristics both in the state and in the key (note that due to similarities between block ciphers and hash functions such tool will be useful in analysis of hash functions as well). We use this tool to search for the best possible (in terms of the number of rounds) related-key diff erential characteristics in AES, byte-Camellia, Khazad, FOX, and Anubis. We show the best related-key diff erential characteristics for 5, 11, and 14 rounds of AES-128, AES-192, and AES-256 respectively. We use the optimal diff erential characteristics to design the best related-key and chosen key attacks on AES-128 (7 out of 10 rounds), AES-192 (full 12 rounds), byte-Camellia (full 18 rounds) and Khazad (7 and 8 out of 8 rounds). We also show that ciphers FOX and Anubis have no related-key attacks on more than 4-5 rounds.
2010
ASIACRYPT
2010
EUROCRYPT
2010
FSE
2009
ASIACRYPT
2009
CRYPTO
2009
FSE
2009
FSE
2008
FSE

Program Committees

FSE 2019
FSE 2018
Eurocrypt 2017
FSE 2016