## CryptoDB

### Antonio Faonio

#### Publications

**Year**

**Venue**

**Title**

2023

PKC

Almost Tightly-Secure Re-Randomizable and Replayable CCA-secure Public Key Encryption
Abstract

Re-randomizable Replayable CCA-secure public key encryption (Rand-RCCA PKE) schemes guarantee security against chosen-ciphertext attacks while ensuring the useful property of re-randomizable ciphertexts. We introduce the notion of multi-user and multi-ciphertext Rand-RCCA PKE and we give the first construction of such a PKE scheme with an almost tight security reduction to a standard assumption. Our construction is structure preserving and can be instantiated over Type-1 pairing groups. Technically, our work borrows ideas from the state of the art Rand-RCCA PKE scheme of Faonio et al. (ASIACRYPT’19) and the adaptive partitioning technique of Hofheinz (EUROCRYPT’17). Additionally, we show (1) how to turn our scheme into a publicly-verifiable (pv) Rand-RCCA scheme and (2) that plugging our pv-Rand-RCCA PKE scheme into the MixNet protocol of Faonio et al. we can obtain the first almost tightly-secure MixNet protocol.

2023

TCC

From Polynomial IOP and Commitments to Non-malleable zkSNARKs
Abstract

We study sufficient conditions to compile simulation-extractable zkSNARKs from information-theoretic interactive oracle proofs (IOP) using a simulation-extractable commit-and-prove system for its oracles. Specifically, we define simulation extractability for opening and evaluation proofs of polynomial commitment schemes, which we then employ to prove the security of zkSNARKS obtained from polynomial IOP proof systems. To instantiate our methodology, we additionally prove that KZG commitments satisfy our simulation extractability requirement, despite being naturally malleable. To this end, we design a relaxed notion of simulation extractability that matches how KZG commitments are used and optimized in real-world proof systems. The proof that KZG satisfies this relaxed simulation extractability property relies on the algebraic group model and random oracle model.

2022

TOSC

Short Non-Malleable Codes from Related-Key Secure Block Ciphers, Revisited
Abstract

We construct non-malleable codes in the split-state model with codeword length m + 3λ or m + 5λ, where m is the message size and λ is the security parameter, depending on how conservative one is. Our scheme is very simple and involves a single call to a block cipher meeting a new security notion which we dub entropic fixed-related-key security, which essentially means that the block cipher behaves like a pseudorandom permutation when queried upon inputs sampled from a distribution with sufficient min-entropy, even under related-key attacks with respect to an arbitrary but fixed key relation. Importantly, indistinguishability only holds with respect to the original secret key (and not with respect to the tampered secret key).In a previous work, Fehr, Karpman, and Mennink (ToSC 2018) used a related assumption (where the block cipher inputs can be chosen by the adversary, and where indistinguishability holds even with respect to the tampered key) to construct a nonmalleable code in the split-state model with codeword length m + 2λ. Unfortunately, no block cipher (even an ideal one) satisfies their assumption when the tampering function is allowed to be cipher-dependent. In contrast, we are able to show that entropic fixed-related-key security holds in the ideal cipher model with respect to a large class of cipher-dependent tampering attacks (including those which break the assumption of Fehr, Karpman, and Mennink).

2021

EUROCRYPT

The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free
📺
Abstract

We show that noisy leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to a small statistical simulation error and a slight loss in the leakage parameter. The latter holds true in particular for one of the most used noisy-leakage models, where the noisiness is measured using the conditional average min-entropy (Naor and Segev, CRYPTO'09 and SICOMP'12).
Our reductions between noisy and bounded leakage are achieved in two steps. First, we put forward a new leakage model (dubbed the dense leakage model) and prove that dense leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to small statistical distance. Second, we show that the most common noisy-leakage models fall within the class of dense leakage, with good parameters. We also provide a complete picture of the relationships between different noisy-leakage models, and prove lower bounds showing that our reductions are nearly optimal.
Our result finds applications to leakage-resilient cryptography, where we are often able to lift security in the presence of bounded leakage to security in the presence of noisy leakage, both in the information-theoretic and in the computational setting. Additionally, we show how to use lower bounds in communication complexity to prove that bounded-collusion protocols (Kumar, Meka, and Sahai, FOCS'19) for certain functions do not only require long transcripts, but also necessarily need to reveal enough information about the inputs.

2021

ASIACRYPT

Lunar: a Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-and-Prove Extensions
📺
Abstract

We study how to construct zkSNARKs whose SRS is universal and updatable, i.e., valid for all relations within a size-bound and to which a dynamic set of participants can indefinitely add secret randomness. Our focus is: efficient universal updatable zkSNARKs with linear-size SRS and their commit-and-prove variants. We both introduce new formal frameworks and techniques, as well as systematize existing ones. We achieve a collection of zkSNARKs with different tradeoffs. One of our schemes achieves the smallest proof size and proving time compared to the state of art for proofs for arithmetic circuits. The language supported by this scheme is a variant of R1CS that we introduce, called R1CS-lite. Another of our constructions directly supports standard R1CS and achieves the fastest proving time for this type of constraints.
These results stem from different contributions: (1) a new algebraically-flavored variant of IOPs that we call Polynomial Holographic IOPs (PHPs); (2) a new compiler that combines our PHPs with commit-and-prove zk-SNARKs (CP-SNARKs) for committed polynomials; (3) pairing-based realizations of these CP-SNARKs for polynomials; (4) constructions of PHPs for R1CS and R1CS-lite. Finally, we extend the compiler in item (2) to yield commit-and-prove universal zkSNARKs.

2021

TCC

Continuously Non-Malleable Secret Sharing: Joint Tampering, Plain Model and Capacity
📺
Abstract

We study non-malleable secret sharing against joint leakage and joint tampering attacks.
Our main result is the first threshold secret sharing scheme in the plain model achieving resilience to noisy-leakage and continuous tampering.
The above holds under (necessary) minimal computational assumptions (i.e., the existence of one-to-one one-way functions), and in a model where the adversary commits to a fixed partition of all the shares into non-overlapping subsets of at most t - 1 shares (where t is the reconstruction threshold), and subsequently jointly leaks from and tampers with the shares within each partition.
We also study the capacity (i.e., the maximum achievable asymptotic information rate) of continuously non-malleable secret sharing against joint continuous tampering attacks. In particular, we prove that whenever the attacker can tamper jointly with k > t/2 shares, the capacity is at most t - k.
The rate of our construction matches this upper bound.
An important corollary of our results is the first non-malleable secret sharing scheme against independent tampering attacks breaking the rate-one barrier (under the same computational assumptions as above).

2020

CRYPTO

Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model
📺
Abstract

Secret sharing enables a dealer to split a secret into a set of shares, in such a way that certain authorized subsets of share holders can reconstruct the secret, whereas all unauthorized subsets cannot.
Non-malleable secret sharing (Goyal and Kumar, STOC 2018) additionally requires that, even if the shares have been tampered with, the reconstructed secret is either the original or a completely unrelated one.
In this work, we construct non-malleable secret sharing tolerating $p$-time {\em joint-tampering} attacks in the plain model (in the computational setting), where the latter means that, for any $p>0$ fixed {\em a priori}, the attacker can tamper with the same target secret sharing up to $p$ times. In particular, assuming one-to-one one-way functions, we obtain:
- A secret sharing scheme for threshold access structures which tolerates joint $p$-time tampering with subsets of the shares of maximal size ({\em i.e.}, matching the privacy threshold of the scheme). This holds in a model where the attacker commits to a partition of the shares into non-overlapping subsets, and keeps tampering jointly with the shares within such a partition (so-called {\em selective partitioning}).
- A secret sharing scheme for general access structures which tolerates joint $p$-time tampering with subsets of the shares of size $O(\sqrt{\log n})$, where $n$ is the number of parties. This holds in a stronger model where the attacker is allowed to adaptively change the partition within each tampering query, under the restriction that once a subset of the shares has been tampered with jointly, that subset is always either tampered jointly or not modified by other tampering queries (so-called {\em semi-adaptive partitioning}).
At the heart of our result for selective partitioning lies a new technique showing that every one-time {\em statistically} non-malleable secret sharing against joint tampering is in fact {\em leakage-resilient} non-malleable ({\em i.e.},\ the attacker can leak jointly from the shares prior to tampering).
We believe this may be of independent interest, and in fact we show it implies lower bounds on the share size and randomness complexity of statistically non-malleable secret sharing against {\em independent} tampering.

2019

CRYPTO

Non-malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate
📺
Abstract

We revisit the concept of non-malleable secret sharing (Goyal and Kumar, STOC 2018) in the computational setting. In particular, under the assumption of one-to-one one-way functions, we exhibit a computationally private, threshold secret sharing scheme satisfying all of the following properties.
Continuous non-malleability: No computationally-bounded adversary tampering independently with all the shares can produce mauled shares that reconstruct to a value related to the original secret. This holds even in case the adversary can tamper continuously, for an unbounded polynomial number of times, with the same target secret sharing, where the next sequence of tampering functions, as well as the subset of shares used for reconstruction, can be chosen adaptively based on the outcome of previous reconstructions.Resilience to noisy leakage: Non-malleability holds even if the adversary can additionally leak information independently from all the shares. There is no bound on the length of leaked information, as long as the overall leakage does not decrease the min-entropy of each share by too much.Improved rate: The information rate of our final scheme, defined as the ratio between the size of the message and the maximal size of a share, asymptotically approaches 1 when the message length goes to infinity.
Previous constructions achieved information-theoretic security, sometimes even for arbitrary access structures, at the price of at least one of the following limitations: (i) Non-malleability only holds against one-time tampering attacks; (ii) Non-malleability holds against a bounded number of tampering attacks, but both the choice of the tampering functions and of the sets used for reconstruction is non-adaptive; (iii) Information rate asymptotically approaching zero; (iv) No security guarantee in the presence of leakage.

2019

TCC

Continuously Non-malleable Secret Sharing for General Access Structures
Abstract

We study leakage-resilient continuously non-malleable secret sharing, as recently introduced by Faonio and Venturi (CRYPTO 2019). In this setting, an attacker can continuously tamper and leak from a target secret sharing of some message, with the goal of producing a modified set of shares that reconstructs to a message related to the originally shared value. Our contributions are two fold.
In the plain model, assuming one-to-one one-way functions, we show how to obtain noisy-leakage-resilient continuous non-malleability for arbitrary access structures, in case the attacker can continuously leak from and tamper with all of the shares independently.In the common reference string model, we show how to obtain a new flavor of security which we dub bounded-leakage-resilient continuous non-malleability under selective $$k$$-partitioning. In this model, the attacker is allowed to partition the target $$n$$ shares into any number of non-overlapping blocks of maximal size $$k$$, and then can continuously leak from and tamper with the shares within each block jointly. Our construction works for arbitrary access structures, and assuming (doubly enhanced) trapdoor permutations and collision-resistant hash functions, we achieve a concrete instantiation for $$k\in O(\log n)$$.
Prior to our work, there was no secret sharing scheme achieving continuous non-malleability against joint tampering, and the only known scheme for independent tampering was tailored to threshold access structures.

2019

ASIACRYPT

Structure-Preserving and Re-randomizable RCCA-Secure Public Key Encryption and Its Applications
Abstract

Re-randomizable RCCA-secure public key encryption (Rand-RCCA PKE) schemes reconcile the property of re-randomizability of the ciphertexts with the need of security against chosen-ciphertexts attacks. In this paper we give a new construction of a Rand-RCCA PKE scheme that is perfectly re-randomizable. Our construction is structure-preserving, can be instantiated over Type-3 pairing groups, and achieves better computation and communication efficiency than the state of the art perfectly re-randomizable schemes (e.g., Prabhakaran and Rosulek, CRYPTO’07). Next, we revive the Rand-RCCA notion showing new applications where our Rand-RCCA PKE scheme plays a fundamental part: (1) We show how to turn our scheme into a publicly-verifiable Rand-RCCA scheme; (2) We construct a malleable NIZK with a (variant of) simulation soundness that allows for re-randomizability; (3) We propose a new UC-secure Verifiable Mix-Net protocol that is secure in the common reference string model. Thanks to the structure-preserving property, all these applications are efficient. Notably, our Mix-Net protocol is the most efficient universally verifiable Mix-Net (without random oracle) where the CRS is an uniformly random string of size independent of the number of senders. The property is of the essence when such protocols are used in large scale.

#### Program Committees

- Eurocrypt 2022

#### Coauthors

- Gianluca Brian (5)
- Matteo Campanelli (1)
- Dario Fiore (3)
- Javier Herranz (1)
- Dennis Hofheinz (1)
- Markulf Kohlweiss (1)
- Jesper Buus Nielsen (3)
- Maciej Obremski (2)
- Anaïs Querol (1)
- Carla Ràfols (1)
- João Ribeiro (2)
- Hadrián Rodríguez (1)
- Luigi Russo (2)
- Mark Simkin (2)
- Maciej Skórski (1)
- Daniele Venturi (8)
- Michał Zając (1)