International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Maciej Obremski

Affiliation: University of Warsaw

Publications

Year
Venue
Title
2021
EUROCRYPT
The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free
We show that noisy leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to a small statistical simulation error and a slight loss in the leakage parameter. The latter holds true in particular for one of the most used noisy-leakage models, where the noisiness is measured using the conditional average min-entropy (Naor and Segev, CRYPTO'09 and SICOMP'12). Our reductions between noisy and bounded leakage are achieved in two steps. First, we put forward a new leakage model (dubbed the dense leakage model) and prove that dense leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to small statistical distance. Second, we show that the most common noisy-leakage models fall within the class of dense leakage, with good parameters. We also provide a complete picture of the relationships between different noisy-leakage models, and prove lower bounds showing that our reductions are nearly optimal. Our result finds applications to leakage-resilient cryptography, where we are often able to lift security in the presence of bounded leakage to security in the presence of noisy leakage, both in the information-theoretic and in the computational setting. Additionally, we show how to use lower bounds in communication complexity to prove that bounded-collusion protocols (Kumar, Meka, and Sahai, FOCS'19) for certain functions do not only require long transcripts, but also necessarily need to reveal enough information about the inputs.
2020
EUROCRYPT
How to Extract Useful Randomness from Unreliable Sources 📺
For more than 30 years, cryptographers have been looking for public sources of uniform randomness in order to use them as a set-up to run appealing cryptographic protocols without relying on trusted third parties. Unfortunately, nowadays it is fair to assess that assuming the existence of physical phenomena producing public uniform randomness is far from reality.  It is known that uniform randomness cannot be extracted from a single weak source. A well-studied way to overcome this is to consider several independent weak sources. However, this means we must trust the various sampling processes of weak randomness from physical processes. Motivated by the above state of affairs, this work considers a set-up where players can access multiple {\em potential} sources of weak randomness, several of which may be jointly corrupted by a computationally unbounded adversary. We introduce {\em SHELA} (Somewhere Honest Entropic Look Ahead) sources to model this situation. We show that there is no hope of extracting uniform randomness from a {\em SHELA} source. Instead, we focus on the task of {\em Somewhere-Extraction} (i.e., outputting several candidate strings, some of which are uniformly distributed -- yet we do not know which). We give explicit constructions of {\em Somewhere-Extractors} for {\em SHELA} sources with good parameters. Then, we present applications of the above somewhere-extractor where the public uniform randomness can be replaced by the output of such extraction from corruptible sources, greatly outperforming trivial solutions. The output of somewhere-extraction is also useful in other settings, such as a suitable source of random coins for many randomized algorithms. In another front, we comprehensively study the problem of {\em Somewhere-Extraction} from a {\em weak} source, resulting in a series of bounds. Our bounds highlight the fact that, in most regimes of parameters (including those relevant for applications), {\em SHELA} sources significantly outperform {\em weak} sources of comparable parameters both when it comes to the process of {\em Somewhere-Extraction}, or in the task of amplification of success probability in randomized algorithms. Moreover, the low quality of somewhere-extraction from weak sources excludes its use in various efficient applications.
2020
CRYPTO
Non-Malleable Secret Sharing against Bounded Joint-Tampering Attacks in the Plain Model 📺
Secret sharing enables a dealer to split a secret into a set of shares, in such a way that certain authorized subsets of share holders can reconstruct the secret, whereas all unauthorized subsets cannot. Non-malleable secret sharing (Goyal and Kumar, STOC 2018) additionally requires that, even if the shares have been tampered with, the reconstructed secret is either the original or a completely unrelated one. In this work, we construct non-malleable secret sharing tolerating $p$-time {\em joint-tampering} attacks in the plain model (in the computational setting), where the latter means that, for any $p>0$ fixed {\em a priori}, the attacker can tamper with the same target secret sharing up to $p$ times. In particular, assuming one-to-one one-way functions, we obtain: - A secret sharing scheme for threshold access structures which tolerates joint $p$-time tampering with subsets of the shares of maximal size ({\em i.e.}, matching the privacy threshold of the scheme). This holds in a model where the attacker commits to a partition of the shares into non-overlapping subsets, and keeps tampering jointly with the shares within such a partition (so-called {\em selective partitioning}). - A secret sharing scheme for general access structures which tolerates joint $p$-time tampering with subsets of the shares of size $O(\sqrt{\log n})$, where $n$ is the number of parties. This holds in a stronger model where the attacker is allowed to adaptively change the partition within each tampering query, under the restriction that once a subset of the shares has been tampered with jointly, that subset is always either tampered jointly or not modified by other tampering queries (so-called {\em semi-adaptive partitioning}). At the heart of our result for selective partitioning lies a new technique showing that every one-time {\em statistically} non-malleable secret sharing against joint tampering is in fact {\em leakage-resilient} non-malleable ({\em i.e.},\ the attacker can leak jointly from the shares prior to tampering). We believe this may be of independent interest, and in fact we show it implies lower bounds on the share size and randomness complexity of statistically non-malleable secret sharing against {\em independent} tampering.
2019
EUROCRYPT
Continuous Non-Malleable Codes in the 8-Split-State Model 📺
Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs [20], provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. NMCs have emerged as a fundamental object at the intersection of coding theory and cryptography. In particular, progress in the study of non-malleable codes and the related notion of non-malleable extractors has led to new insights and progress on even more fundamental problems like the construction of multi-source randomness extractors. A large body of the recent work has focused on various constructions of non-malleable codes in the split-state model. Many variants of NMCs have been introduced in the literature, e.g., strong NMCs, super strong NMCs and continuous NMCs. The most general, and hence also the most useful notion among these is that of continuous non-malleable codes, that allows for continuous tampering by the adversary. We present the first efficient information-theoretically secure continuously non-malleable code in the constant split-state model. We believe that our main technical result could be of independent interest and some of the ideas could in future be used to make progress on other related questions.
2019
CRYPTO
Stronger Leakage-Resilient and Non-Malleable Secret Sharing Schemes for General Access Structures 📺
In this work we present a collection of compilers that take secret sharing schemes for an arbitrary access structure as input and produce either leakage-resilient or non-malleable secret sharing schemes for the same access structure. A leakage-resilient secret sharing scheme hides the secret from an adversary, who has access to an unqualified set of shares, even if the adversary additionally obtains some size-bounded leakage from all other secret shares. A non-malleable secret sharing scheme guarantees that a secret that is reconstructed from a set of tampered shares is either equal to the original secret or completely unrelated. To the best of our knowledge we present the first generic compiler for leakage-resilient secret sharing for general access structures. In the case of non-malleable secret sharing, we strengthen previous definitions, provide separations between them, and construct a non-malleable secret sharing scheme for general access structures that fulfills the strongest definition with respect to independent share tampering functions. More precisely, our scheme is secure against concurrent tampering: The adversary is allowed to (non-adaptively) tamper the shares multiple times, and in each tampering attempt can freely choose the qualified set of shares to be used by the reconstruction algorithm to reconstruct the tampered secret. This is a strong analogue of the multiple-tampering setting for split-state non-malleable codes and extractors.We show how to use leakage-resilient and non-malleable secret sharing schemes to construct leakage-resilient and non-malleable threshold signatures. Classical threshold signatures allow to distribute the secret key of a signature scheme among a set of parties, such that certain qualified subsets can sign messages. We construct threshold signature schemes that remain secure even if an adversary leaks from or tampers with all secret shares.
2018
TCC
Continuous NMC Secure Against Permutations and Overwrites, with Applications to CCA Secure Commitments
Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak and Wichs in ICS 2010 as a relaxation of error correcting codes and error detecting codes. Faust, Mukherjee, Nielsen, and Venturi in TCC 2014 introduced an even stronger notion of non-malleable codes called continuous non-malleable codes where security is achieved against continuous tampering of a single codeword without re-encoding.We construct information theoretically secure CNMC resilient to bit permutations and overwrites, this is the first Continuous NMC constructed outside of the split-state model.In this work we also study relations between the CNMC and parallel CCA commitments. We show that the CNMC can be used to bootstrap a Self-destruct parallel CCA bit commitment to a Self-destruct parallel CCA string commitment, where Self-destruct parallel CCA is a weak form of parallel CCA security. Then we can get rid of the Self-destruct limitation obtaining a parallel CCA commitment, requiring only one-way functions.
2017
TCC
2015
EPRINT
2015
TCC
2013
CRYPTO