## CryptoDB

### Hamza Abusalah

#### Publications

**Year**

**Venue**

**Title**

2024

TCC

Black-Box Timed Commitments from Time-Lock Puzzles
Abstract

A Timed Commitment (TC) with time parameter $t$ is hiding for time at most $t$, that is, commitments can be force-opened by any third party within time $t$. In addition to various cryptographic assumptions, the security of all known TC schemes relies on the sequentiality assumption of repeated squarings in hidden-order groups. The repeated squaring assumption is therefore a security bottleneck.
In this work, we give a black-box construction of TCs from any time-lock puzzle (TLP) by additionally relying on one-way permutations and collision-resistant hashing.
Currently, TLPs are known from (a) the specific repeated squaring assumption, (b) the general (necessary) assumption on the \emph{existence of worst-case non-parallelizing languages} and indistinguishability obfuscation, and (c) any iteratively sequential function and the hardness of the circular small-secret LWE problem. The latter admits a plausibly post-quantum secure instantiation.
Hence, thanks to the generality of our transform, we get i) the first TC whose \emph{timed} security is based on the the existence of non-parallelizing languages and ii) the first TC that is plausibly post-quantum secure.
We first define \emph{quasi publicly-verifiable} TLPs (QPV-TLPs) and construct them from any standard TLP in a black-box manner without relying on any additional assumptions. Then, we devise a black-box commit-and-prove system to transform any QPV-TLPs into a TC.

2023

EUROCRYPT

An Incremental PoSW for General Weight Distributions
Abstract

A proof of sequential work (PoSW) scheme allows the prover to convince a verifier that it computed a certain number of computational steps sequentially.
Very recently, graph-labeling PoSW schemes, found applications in light-client blockchain protocols, most notably bootstrapping. A bootstrapping protocol allows a light client, with minimal information about the blockchain, to hold a commitment to its stable prefix.
An incremental PoSW (iPoSW) scheme allows the prover to non-trivially increment proofs: given $\chi,\pi_1$ and integers $N_1,N_2$ such that $\pi_1$ is a valid proof for $N_1$, it generates a valid proof $\pi$ for $N_1+N_2$.
In this work, we construct an iPoSW scheme based on the skiplist-based PoSW scheme of Abusalah et al. and prove its security in the random oracle model by employing the powerful on-the-fly sampling technique of Döttling et al. Moreover, unlike the iPoSW scheme of Döttling et al., ours is the first iPoSW scheme which is suitable for constructing incremental non-interactive arguments of chain knowledge (SNACK) schemes, which are at the heart of space and time efficient blockchain light-client protocols. In particular, our scheme works for general weight distributions, which we characterize as incrementally sampleable distributions. Our general treatment recovers the distribution underlying the scheme of Döttling et al. as well as the distribution underlying SNACK-enabled bootstrapping application as special cases. In realizing our general construction, we develop a new on-the-fly sampling technique.

2022

ASIACRYPT

SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients
📺
Abstract

The success of blockchains has led to ever-growing ledgers that are stored by all participating full nodes. In contrast, light clients only store small amounts of blockchain-related data and rely on the mediation of full nodes when interacting with the ledger. A broader adoption of blockchains calls for protocols that make this interaction trustless.
We revisit the design of light-client blockchain protocols from the perspective of classical proof-system theory, and explain the role that proofs of sequential work (PoSWs) can play in it. To this end, we define a new primitive called succinct non-interactive argument of chain knowledge (SNACK), a non-interactive proof system that provides clear security guarantees to a verifier (a light client) even when interacting only with a single dishonest prover (a full node).
We show how augmenting any blockchain with any graph-labeling PoSW (GL-PoSW) enables SNACK proofs for this blockchain. We also provide a unified and extended definition of GL-PoSWs covering all existing constructions, and describe two new variants. We then show how SNACKs can be used to construct light-client protocols, and highlight some deficiencies of existing designs, along with mitigations. Finally, we introduce incremental SNACKs which could potentially provide a new approach to light mining.

2019

EUROCRYPT

Reversible Proofs of Sequential Work
📺
Abstract

Proofs of sequential work (PoSW) are proof systems where a prover, upon receiving a statement
$$\chi $$
and a time parameter T computes a proof
$$\phi (\chi ,T)$$
which is efficiently and publicly verifiable. The proof can be computed in T sequential steps, but not much less, even by a malicious party having large parallelism. A PoSW thus serves as a proof that T units of time have passed since
$$\chi $$
was received.PoSW were introduced by Mahmoody, Moran and Vadhan [MMV11], a simple and practical construction was only recently proposed by Cohen and Pietrzak [CP18].In this work we construct a new simple PoSW in the random permutation model which is almost as simple and efficient as [CP18] but conceptually very different. Whereas the structure underlying [CP18] is a hash tree, our construction is based on skip lists and has the interesting property that computing the PoSW is a reversible computation.The fact that the construction is reversible can potentially be used for new applications like constructing proofs of replication. We also show how to “embed” the sloth function of Lenstra and Weselowski [LW17] into our PoSW to get a PoSW where one additionally can verify correctness of the output much more efficiently than recomputing it (though recent constructions of “verifiable delay functions” subsume most of the applications this construction was aiming at).

#### Coauthors

- Hamza Abusalah (5)
- Joël Alwen (1)
- Gennaro Avitabile (1)
- Valerio Cini (1)
- Bram Cohen (1)
- Georg Fuchsbauer (1)
- Peter Gaži (1)
- Chethan Kamath (1)
- Danylo Khilko (1)
- Karen Klein (2)
- Krzysztof Pietrzak (2)
- Leonid Reyzin (1)
- Michael Walter (1)