## CryptoDB

### Valerio Cini

#### Publications

**Year**

**Venue**

**Title**

2024

CRYPTO

Polynomial Commitments from Lattices: Post-Quantum Security, Fast Verification and Transparent Setup
Abstract

Polynomial commitment scheme allows a prover to commit to a polynomial $f \in \ring[X]$ of degree $L$, and later prove that the committed function was correctly evaluated at a specified point $x$; in other words $f(x)=u$ for public $x,u \in \ring$. Most applications of polynomial commitments, e.g. succinct non-interactive arguments of knowledge (SNARKs), require that (i) both the commitment and evaluation proof are succinct (i.e., polylogarithmic in the degree $L$) - with the latter being efficiently verifiable, and (ii) no pre-processing step is allowed.
Surprisingly, as far as plausibly quantum-safe polynomial commitments are concerned, the currently most efficient constructions only rely on weak cryptographic assumptions, such as security of hash functions. Indeed, despite making use of the underlying algebraic structure, prior lattice-based polynomial commitments still seem to be much behind the hash-based ones. Moreover, security of the aforementioned lattice constructions against quantum adversaries was never formally discussed.
In this work, we bridge the gap and propose the first (asymptotically and concretely) efficient lattice-based polynomial commitment with transparent setup and post-quantum security. Our interactive variant relies on the standard (Module-)SIS problem, and can be made non-interactive in the random oracle model using Fiat-Shamir transformation. In addition, we equip the scheme with a knowledge soundness proof against quantum adversaries which can be of independent interest. In terms of concrete efficiency, for $L=2^{20}$ our scheme yields proofs of size $2$X smaller than the hash-based \textsf{FRI} commitment (Block et al., Asiacrypt 2023), and $60$X smaller than the very recent lattice-based construction by Albrecht et al. (Eprint 2023/1469).

2024

ASIACRYPT

Unbounded ABE for Circuits from LWE, Revisited
Abstract

We introduce new lattice-based techniques for building ABE for circuits with unbounded attribute length based on the LWE assumption, improving upon the previous constructions of Brakerski and Vaikuntanathan (CRYPTO 16) and Goyal, Koppula, and Waters (TCC 16). Our main result is a simple and more efficient unbounded ABE scheme for circuits where only the circuit depth is fixed at set-up; this is the first unbounded ABE scheme for circuits that rely only on black-box access to cryptographic and lattice algorithms. The scheme achieves semi-adaptive security against unbounded collusions under the LWE assumption. The encryption time and ciphertext size are roughly 3x larger than the prior bounded ABE of Boneh et al (EUROCRYPT 2014), substantially improving upon the encryption times in prior works. As a secondary contribution, we present an analogous result for unbounded inner product predicate encryption that satisfies weak attribute-hiding.

2023

EUROCRYPT

An Incremental PoSW for General Weight Distributions
Abstract

A proof of sequential work (PoSW) scheme allows the prover to convince a verifier that it computed a certain number of computational steps sequentially.
Very recently, graph-labeling PoSW schemes, found applications in light-client blockchain protocols, most notably bootstrapping. A bootstrapping protocol allows a light client, with minimal information about the blockchain, to hold a commitment to its stable prefix.
An incremental PoSW (iPoSW) scheme allows the prover to non-trivially increment proofs: given $\chi,\pi_1$ and integers $N_1,N_2$ such that $\pi_1$ is a valid proof for $N_1$, it generates a valid proof $\pi$ for $N_1+N_2$.
In this work, we construct an iPoSW scheme based on the skiplist-based PoSW scheme of Abusalah et al. and prove its security in the random oracle model by employing the powerful on-the-fly sampling technique of Döttling et al. Moreover, unlike the iPoSW scheme of Döttling et al., ours is the first iPoSW scheme which is suitable for constructing incremental non-interactive arguments of chain knowledge (SNACK) schemes, which are at the heart of space and time efficient blockchain light-client protocols. In particular, our scheme works for general weight distributions, which we characterize as incrementally sampleable distributions. Our general treatment recovers the distribution underlying the scheme of Döttling et al. as well as the distribution underlying SNACK-enabled bootstrapping application as special cases. In realizing our general construction, we develop a new on-the-fly sampling technique.

2023

CRYPTO

Lattice-based Succinct Arguments from Vanishing Polynomials
Abstract

Succinct arguments allow a prover to convince a verifier of the validity of any statement in a language, with minimal communication and verifier's work. Among other approaches, lattice-based protocols offer solid theoretical foundations, post-quantum security, and a rich algebraic structure. In this work, we present some new approaches to constructing efficient lattice-based succinct arguments. Our main technical ingredient is a new commitment scheme based on \emph{vanishing polynomials}, a notion borrowed from algebraic geometry. We analyse the security of such a commitment scheme, and show how to take advantage of the additional algebraic structure to build new lattice-based succinct arguments. A few highlights amongst our results are:
\begin{enumerate}
\item The first recursive folding (i.e. Bulletproofs-like) protocol for linear relations with \emph{polylogarithmic} verifier runtime. Traditionally, the verifier runtime has been the efficiency bottleneck for such protocols (regardless of the underlying assumptions).
\item The first verifiable delay function (VDF) based on lattices, building on a recently introduced sequential relation.
\item The first lattice-based \emph{linear-time prover} succinct argument for NP, in the preprocessing model. The soundness of the scheme is based on (knowledge)-k-R-ISIS assumption [Albrecht et al., CRYPTO'22].
\end{enumerate}

2023

JOFC

(Inner-Product) Functional Encryption with Updatable Ciphertexts
Abstract

We propose a novel variant of functional encryption which supports ciphertext updates, dubbed ciphertext-updatable functional encryption. Such a feature further broadens the practical applicability of the functional encryption paradigm and allows for fine-grained access control even after a ciphertext is generated. Updating ciphertexts is carried out via so-called update tokens which a dedicated party can use to convert ciphertexts. However, allowing update tokens requires some care for the security definition. Our contribution is threefold: (a) We define our new primitive with a security notion in the indistinguishability setting. Within CUFE, functional decryption keys and ciphertexts are labeled with tags such that only if the tags of the decryption key and the ciphertext match, then decryption succeeds. Furthermore, we allow ciphertexts to switch their tags to any other tag via update tokens. Such tokens are generated by the holder of the main secret key and can only be used in the desired direction. (b) We present a generic construction of CUFE for any functionality as well as predicates different from equality testing on tags which relies on the existence of indistinguishability obfuscation (iO). (c) We present a practical construction of CUFE for the inner-product functionality from standard assumptions (i.e., LWE) in the random-oracle model. On the technical level, we build on the recent functional encryption schemes with fine-grained access control and linear operations on encrypted data (Abdalla et al., AC’20) and introduce an additional ciphertext updatability feature. Proving security for such a construction turned out to be non-trivial, particularly when revealing keys for the updated challenge ciphertext is allowed. Overall, such construction enriches the set of known inner-product functional encryption schemes with the additional updatability feature of ciphertexts.

2022

CRYPTO

Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable
📺
Abstract

A succinct non-interactive argument of knowledge (SNARK) allows a prover to produce a short proof that certifies the veracity of a certain NP-statement. In the last decade, a large body of work has studied candidate constructions that are secure against quantum attackers. Unfortunately, no known candidate matches the efficiency and desirable features of (pre-quantum) constructions based on bilinear pairings.
In this work, we make progress on this question. We propose the first lattice-based SNARK that simultaneously satisfies many desirable properties: It (i) is tentatively post-quantum secure, (ii) is publicly-verifiable, (iii) has a logarithmic-time verifier and (iv) has a purely algebraic structure making it amenable to efficient recursive composition. Our construction stems from a general technical toolkit that we develop to translate pairing-based schemes to lattice-based ones. At the heart of our SNARK is a new lattice-based vector commitment (VC) scheme supporting openings to constant-degree multivariate polynomial maps, which is a candidate solution for the open problem of constructing VC schemes with openings to beyond linear functions. However, the security of our constructions is based on a new family of lattice-based computational assumptions which naturally generalises the standard Short Integer Solution (SIS) assumption.

2021

PKC

Updatable Signatures and Message Authentication Codes
📺
Abstract

Cryptographic objects with updating capabilities have been proposed by Bellare, Goldreich and Goldwasser (CRYPTO'94) under the umbrella of incremental cryptography. They have recently seen increased interest, motivated by theoretical questions (Ananth et al., EC'17) as well as concrete practical motivations (Lehmann et al., EC'18; Groth et al. CRYPTO'18; Klooß et al., EC'19). In this work, the form of updatability we are particularly interested in is that primitives are key-updatable and allow to update ''old'' cryptographic objects, e.g., signatures or message authentication codes, from the ''old'' key to the updated key at the same time without requiring full access to the new key (i.e., only via a so-called update token).
Inspired by the rigorous study of updatable encryption by Lehmann and Tackmann (EC'18) and Boyd et al. (CRYPTO'20), we introduce a definitional framework for updatable signatures (USs) and message authentication codes (UMACs). We discuss several applications demonstrating that such primitives can be useful in practical applications, especially around key rotation in various domains, as well as serve as building blocks in other cryptographic schemes. We then turn to constructions and our focus there is on ones that are secure and practically efficient. In particular, we provide generic constructions from key-homomorphic primitives (signatures and PRFs) as well as direct constructions. This allows us to instantiate these primitives from various assumptions such as DDH or CDH (latter in bilinear groups), or the (R)LWE and the SIS assumptions. As an example, we obtain highly practical US schemes from BLS signatures or UMAC schemes from the Naor-Pinkas-Reingold PRF.

2020

ASIACRYPT

CCA-Secure (Puncturable) KEMs from Encryption With Non-Negligible Decryption Errors
📺
Abstract

Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEMs) are fundamental cryptographic building blocks to realize secure communication protocols. There are several known transformations that generically turn weakly secure schemes into strongly (i.e., IND-CCA) secure ones. While most of these transformations require the weakly secure scheme to provide perfect correctness, Hofheinz, Hövelmanns, and Kiltz (HHK) (TCC 2017) have recently shown that variants of the Fujisaki-Okamoto (FO) transform can work with schemes that have negligible correctness error in the (quantum) random oracle model (QROM). Many recent schemes in the NIST post-quantum competition (PQC) use variants of these transformations. Some of their CPA-secure versions even have a non-negligible correctness error and so the techniques of HHK cannot be applied.
In this work, we study the setting of generically transforming PKE schemes with potentially large, i.e., non-negligible, correctness error to ones having negligible correctness error. While there have been previous treatments in an asymptotic setting by Dwork et al. (EUROCRYPT 2004), our goal is to come up with practically efficient compilers in a concrete setting and apply them in two different contexts: firstly, we show how to generically transform weakly secure deterministic or randomized PKEs into CCA-secure KEMs in the (Q)ROM using variants of HHK. This applies to essentially all candidates to the NIST PQC based on lattices and codes with non-negligible error, for which we provide an extensive analysis. We thereby show that it improves some of the code-based candidates. Secondly, we study puncturable KEMs in terms of the Bloom Filter KEM (BFKEM) proposed by Derler et al. (EUROCRYPT 2018) which inherently have a non-negligible correctness error. BFKEMs are a building block to construct fully forward-secret zero round-trip time (0-RTT) key-exchange protocols. In particular, we show how to achieve the first post-quantum secure BFKEM generically from lattices and codes by applying our techniques to identity-based encryption (IBE) schemes with (non-)negligible correctness error.

#### Program Committees

- Asiacrypt 2024

#### Coauthors

- Hamza Abusalah (1)
- Martin R. Albrecht (1)
- Valerio Cini (8)
- Russell W. F. Lai (2)
- Giulio Malavolta (3)
- Ngoc Khanh Nguyen (1)
- Sebastian Ramacher (3)
- Daniel Slamanig (3)
- Christoph Striecks (3)
- Erkan Tairi (2)
- Sri Aravinda Krishnan Thyagarajan (1)
- Hoeteck Wee (2)