International Association for Cryptologic Research

International Association
for Cryptologic Research


Karen Klein


Limits on the Adaptive Security of Yao’s Garbling 📺
Yao’s garbling scheme is one of the most fundamental cryptographic constructions. Lindell and Pinkas (Journal of Cryptograhy 2009) gave a formal proof of security in the selective setting assuming secure symmetric-key encryption (and hence one-way functions). This was fol- lowed by results, both positive and negative, concerning its security in the, stronger, adaptive setting. Applebaum et al. (Crypto 2013) showed that it cannot satisfy adaptive security as is, due to a simple incompressibility argument. Jafagholi and Wichs (TCC 2017) considered a natural adaptation of Yao’s scheme that circumvents this negative result, and proved that it is adaptively secure, at least for shallow circuits. In particular, they showed that for the class of circuits of depth d, the loss in security is at most exponential in d. The above results all concern the simulation-based notion of security. In this work, we show that the upper bound of Jafargholi and Wichs is more or less optimal in a strong sense. As our main result, we show that there exists a family of Boolean circuits, one for each depth d ∈ N, such that any black-box reduction proving the adaptive indistinguishability- security of the natural adaptation of Yao’s scheme from any symmetric-key encryption has to lose a factor that is sub-exponential in d. Since indistinguishability is a weaker notion than simulation, our bound also applies to adaptive simulation. To establish our results, we build on the recent approach of Kamath et al. (Eprint 2021), which uses pebbling lower bounds in conjunction with oracle separations to prove fine-grained lower bounds on loss in cryptographic security
Adaptively Secure Proxy Re-encryption
A proxy re-encryption (PRE) scheme is a public-key encryption scheme that allows the holder of a key pk to derive a re-encryption key for any other key $$pk'$$ . This re-encryption key lets anyone transform ciphertexts under pk into ciphertexts under $$pk'$$ without having to know the underlying message, while transformations from $$pk'$$ to pk should not be possible (unidirectional). Security is defined in a multi-user setting against an adversary that gets the users’ public keys and can ask for re-encryption keys and can corrupt users by requesting their secret keys. Any ciphertext that the adversary cannot trivially decrypt given the obtained secret and re-encryption keys should be secure.All existing security proofs for PRE only show selective security, where the adversary must first declare the users it wants to corrupt. This can be lifted to more meaningful adaptive security by guessing the set of corrupted users among the n users, which loses a factor exponential in , rendering the result meaningless already for moderate .Jafargholi et al. (CRYPTO’17) proposed a framework that in some cases allows to give adaptive security proofs for schemes which were previously only known to be selectively secure, while avoiding the exponential loss that results from guessing the adaptive choices made by an adversary. We apply their framework to PREs that satisfy some natural additional properties. Concretely, we give a more fine-grained reduction for several unidirectional PREs, proving adaptive security at a much smaller loss. The loss depends on the graph of users whose edges represent the re-encryption keys queried by the adversary. For trees and chains the loss is quasi-polynomial in the size and for general graphs it is exponential in their depth and indegree (instead of their size as for previous reductions). Fortunately, trees and low-depth graphs cover many, if not most, interesting applications.Our results apply e.g. to the bilinear-map based PRE schemes by Ateniese et al. (NDSS’05 and CT-RSA’09), Gentry’s FHE-based scheme (STOC’09) and the LWE-based scheme by Chandran et al. (PKC’14).
Reversible Proofs of Sequential Work 📺
Proofs of sequential work (PoSW) are proof systems where a prover, upon receiving a statement $$\chi $$ and a time parameter T computes a proof $$\phi (\chi ,T)$$ which is efficiently and publicly verifiable. The proof can be computed in T sequential steps, but not much less, even by a malicious party having large parallelism. A PoSW thus serves as a proof that T units of time have passed since $$\chi $$ was received.PoSW were introduced by Mahmoody, Moran and Vadhan [MMV11], a simple and practical construction was only recently proposed by Cohen and Pietrzak [CP18].In this work we construct a new simple PoSW in the random permutation model which is almost as simple and efficient as [CP18] but conceptually very different. Whereas the structure underlying [CP18] is a hash tree, our construction is based on skip lists and has the interesting property that computing the PoSW is a reversible computation.The fact that the construction is reversible can potentially be used for new applications like constructing proofs of replication. We also show how to “embed” the sloth function of Lenstra and Weselowski [LW17] into our PoSW to get a PoSW where one additionally can verify correctness of the output much more efficiently than recomputing it (though recent constructions of “verifiable delay functions” subsume most of the applications this construction was aiming at).