International Association for Cryptologic Research

International Association
for Cryptologic Research


Miguel Ambrona


Multi-Authority ABE for Non-Monotonic Access Structures
Miguel Ambrona Romain Gay
Attribute-Based Encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. Multi-Authority Attribute-Based Encryption (MA-ABE) is a generalization of ABE where the central authority is distributed across several independent parties. We provide the first MA-ABE scheme from asymmetric prime-order pairings where no trusted setup is needed and where the attribute universe of each authority is unbounded. Moreover, it is the first to handle non-monotonic access structures. These features broaden the applicability and improve the efficiency of our scheme. Our construction makes a modular use of Functional Encryption schemes with fine-grained access control.
Generic Negation of Pair Encodings 📺
Miguel Ambrona
Attribute-based encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. Pair encodings (Attrapadung, EUROCRYPT 2014) are simple primitives that can be used for constructing fully secure ABE schemes associated to a predicate relative to the encoding. We propose a generic transformation that takes any pair encoding scheme (PES) for a predicate P and produces a PES for its negated predicate \bar{P} . This construction finally solves a problem that was open since 2015. Our techniques bring new insight to the expressivity and generality of PES and can be of independent interest. We also provide, to the best of our knowledge, the first pair encoding scheme for negated doubly spatial encryption (obtained with our transformation) and explore several other consequences of our results.
Acyclicity Programming for Sigma-Protocols 📺
Cramer, Damgård, and Schoenmakers (CDS) built a proof system to demonstrate the possession of subsets of witnesses for a given collection of statements that belong to a prescribed access structure P by composing so-called sigma-protocols for each atomic statement. Their verifier complexity is linear in the size of the monotone span program representation of P. We propose an alternative method for combining sigma-protocols into a single non-interactive system for a compound statement in the random oracle model. In contrast to CDS, our verifier complexity is linear in the size of the acyclicity program representation of P, a complete model of monotone computation introduced in this work. We show that the acyclicity program size of a predicate is never larger than its de Morgan formula size and it is polynomially incomparable to its monotone span program size. We additionally present an extension of our proof system, with verifier complexity linear in the monotone circuit size of P, in the common reference string model. Finally, considering the types of statement that naturally reduce to acyclicity programming, we discuss several applications of our new methods to protecting privacy in cryptocurrency and social networks.
On Black-Box Extensions of Non-interactive Zero-Knowledge Arguments, and Signatures Directly from Simulation Soundness 📺
Masayuki Abe Miguel Ambrona Miyako Ohkubo
Highly efficient non-interactive zero-knowledge arguments (NIZK) are often constructed for limited languages and it is not known how to extend them to cover wider classes of languages in general. In this work we initiate a study on black-box language extensions for conjunctive and disjunctive relations, that is, building a NIZK system for $${mathcal L}diamond hat{{mathcal L}}$$ (with $$diamond in {wedge , vee }$$ ) based on NIZK systems for languages $${mathcal L}$$ and $$hat{{mathcal L}}$$ . While the conjunctive extension of NIZKs is straightforward by simply executing the given NIZKs in parallel, it is not known how disjunctive extensions could be achieved in a black-box manner. Besides, observe that the simple conjunctive extension does not work in the case of simulation-sound NIZKs (SS-NIZKs), as pointed out by Sahai (Sahai, FOCS 1999). Our main contribution is an impossibility result that negates the existence of the above extensions and implies other non-trivial separations among NIZKs, SS-NIZKs, and labelled SS-NIZKs. Motivated by the difficulty of such transformations, we additionally present an efficient construction of signature schemes based on unbounded simulation-sound NIZKs (USS-NIZKs) for any language without language extensions.
Non-Interactive Composition of Sigma-Protocols via Share-then-Hash 📺
Proofs of partial knowledge demonstrate the possession of certain subsets of witnesses for a given collection of statements x_1,\dots,x_n. Cramer, Damg{\aa}rd, and Schoenmakers (CDS), built proofs of partial knowledge, given "atomic" protocols for individual statements x_i, by having the prover randomly secret share the verifier's challenge and using the shares as challenges for the atomic protocols. This simple and highly-influential transformation has been used in numerous applications, ranging from anonymous credentials to ring signatures. We consider what happens if, instead of using the shares directly as challenges, the prover first hashes them. We show that this elementary enhancement can result in significant benefits: - the proof contains a {\em single} atomic transcript per statement x_i, - it suffices that the atomic protocols are k-special sound for k \geq 2, - when compiled using the Fiat-Shamir heuristic, the protocol retains its soundness in the {\em non-programmable} random oracle model. None of the above features is satisfied by the CDS transformation.

Program Committees

Asiacrypt 2023