International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Abhiram Kothapalli

Publications

Year
Venue
Title
2022
PKC
Storing and Retrieving Secrets on a blockchain 📺
A secret sharing scheme enables one party to distribute shares of a secret to n parties and ensures that an adversary in control of t out of n parties will learn no information about the secret. However, traditional secret sharing schemes are often insufficient, especially for applications in which the set of parties who hold the secret shares might change over time. To achieve security in this setting, dynamic proactive secret sharing (DPSS) is used. DPSS schemes proactively update the secret shares held by the parties and allow changes to the set of parties holding the secrets. We propose FaB-DPSS (FAst Batched DPSS) -- a new and highly optimized batched DPSS scheme. While previous work on batched DPSS focuses on a single client submitting a batch of secrets and does not allow storing and releasing secrets independently, we allow multiple different clients to dynamically share and release secrets. FaB-DPSS is the most efficient robust DPSS scheme that supports the highest possible adversarial threshold of 1/2. We prove FaB-DPSS secure and implement it. All operations complete in seconds, and we outperform a prior state-of-the-art DPSS scheme by over 6 times. Additionally, we propose new applications of DPSS in the context of blockchains. Specifically, we propose a protocol that uses blockchains and FaB-DPSS to provide conditional secret storage. The protocol allows parties to store secrets along with a release condition, and once a (possibly different) party satisfies this release condition, the secret is privately released to that party. This functionality is similar to extractable witness encryption. While there are numerous compelling applications (e.g., time-lock encryption, one-time programs, and fair multi-party computation) which rely on extractable witness encryption, there are no known efficient constructions (or even constructions based on any well-studied assumptions) of extractable witness encryption. However, by utilizing blockchains and FaB-DPSS, we can easily build all those applications. We provide an implementation of our conditional secret storage protocol as well as several applications building on top of it.
2022
CRYPTO
Nova: Recursive Zero-Knowledge Arguments from Folding Schemes 📺
Abhiram Kothapalli Srinath Setty Ioanna Tzialla
We introduce a new approach to realize incrementally verifiable computation (IVC), in which the prover recursively proves the correct execution of incremental computations of the form y=F^{(\ell)}(x), where F is a (potentially non-deterministic) computation, x is the input, y is the output, and \ell > 0. Unlike prior approaches to realize IVC, our approach avoids succinct non-interactive arguments of knowledge (SNARKs) entirely (and arguments of knowledge in general). Instead, we introduce and employ folding schemes, a weaker, simpler, and more efficiently-realizable primitive, which reduces the task of checking two instances in some relation to the task of checking a single instance. We construct a folding scheme for NP and show that it implies an IVC scheme with improved efficiency characteristics: (1) the "recursion overhead" (i.e., the number of steps that the prover proves in addition to proving the execution of F) is a constant and it is dominated by two group scalar multiplications expressed as a circuit (this is the smallest recursion overhead in the literature) and (2) the prover's work at each step is dominated by two multiexponentiations of size O(|F|), providing the fastest prover in the literature. The size of a proof is O(|F|) group elements, but we show that using a variant of an existing zkSNARK, the prover can prove the knowledge of a valid proof succinctly and in zero-knowledge with O(\log{|F|}) group elements. Finally, our approach neither requires a trusted setup nor FFTs, so it can be instantiated efficiently with any cycles of elliptic curves where DLOG is hard.