International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Thorsten Kleinjung

Affiliation: Ecole Polytechnique Fédérale de Lausanne

Publications

Year
Venue
Title
2019
ASIACRYPT
CSI-FiSh: Efficient Isogeny Based Signatures Through Class Group Computations
Ward Beullens Thorsten Kleinjung Frederik Vercauteren
In this paper we report on a new record class group computation of an imaginary quadratic field having 154-digit discriminant, surpassing the previous record of 130 digits. This class group is central to the CSIDH-512 isogeny based cryptosystem, and knowing the class group structure and relation lattice implies efficient uniform sampling and a canonical representation of its elements. Both operations were impossible before and allow us to instantiate an isogeny based signature scheme first sketched by Stolbunov. We further optimize the scheme using multiple public keys and Merkle trees, following an idea by De Feo and Galbraith. We also show that including quadratic twists allows to cut the public key size in half for free. Optimizing for signature size, our implementation takes 390 ms to sign/verify and results in signatures of 263 bytes, at the expense of a large public key. This is 300 times faster and over 3 times smaller than an optimized version of SeaSign for the same parameter set. Optimizing for public key and signature size combined, results in a total size of 1468 bytes, which is smaller than any other post-quantum signature scheme at the 128-bit security level.
2017
EUROCRYPT
2015
EPRINT
2015
EPRINT
2015
ASIACRYPT
2014
CRYPTO
2014
EPRINT
2014
EPRINT
2014
EPRINT
2014
ASIACRYPT
2014
CHES
2012
CRYPTO
2012
ASIACRYPT
ECM at Work
Joppe W. Bos Thorsten Kleinjung
2010
EPRINT
Factorization of a 768-bit RSA modulus
This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.
2010
EPRINT
ECC2K-130 on Cell CPUs
This paper describes an implementation of Pollard's rho algorithm to compute the elliptic curve discrete logarithm for the Synergistic Processor Elements of the Cell Broadband Engine Architecture. Our implementation targets the elliptic curve discrete logarithm problem defined in the Certicom ECC2K-130 challenge. We compare a bitsliced implementation to a non-bitsliced implementation and describe several optimization techniques for both approaches. In particular, we address the question whether normal-basis or polynomial-basis representation of field elements leads to better performance. Using our software, the ECC2K-130 challenge can be solved in one year using the Synergistic Processor Units of less than 2700 Sony Playstation~3 gaming consoles.
2010
EPRINT
Pushing the Limits of ECM
This paper describes our implementation of phase one of the elliptic curve method on the Cell processor and reports on actual record factors obtained. Our implementation uses a new and particularly efficient variable radix multiplication of independent interest.
2010
CRYPTO
2007
ASIACRYPT
2007
EPRINT
A kilobit special number field sieve factorization
We describe how we reached a new factoring milestone by completing the first special number field sieve factorization of a number having more than 1024 bits, namely the Mersenne number $2^{1039}-1$. Although this factorization is orders of magnitude `easier' than a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain our result shed new light on the feasibility of the latter computation.
2005
CHES