International Association for Cryptologic Research

International Association
for Cryptologic Research


Tomer Ashur

Affiliation: KU Leuven, Belgium


Revisiting the Wrong-Key-Randomization Hypothesis
Linear cryptanalysis is considered to be one of the strongest techniques in the cryptanalyst’s arsenal. In most cases, Matsui’s Algorithm 2 is used for the key recovery part of the attack. The success rate analysis of this algorithm is based on an assumption regarding the bias of a linear approximation for a wrong key, known as the wrong-key-randomization hypothesis. This hypothesis was refined by Bogdanov and Tischhauser to take into account the stochastic nature of the bias for a wrong key. We provide further refinements to the analysis of Matsui’s Algorithm 2 by considering sampling without replacement. This paper derives the distribution of the observed bias for wrong keys when sampling is done without replacement and shows that less data are required in this scenario. It also develops formulas for the success probability and the required data complexity when this approach is taken. The formulas predict that the success probability may reach a peak and then decrease as more pairs are considered. We provide a new explanation for this behavior and derive the conditions for encountering it. We empirically verify our results and compare them to previous work.
Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols
While traditional symmetric algorithms like AES and SHA3 are optimized for efficient hardware and software implementations, a range of emerging applications using advanced cryptographic protocols such as multi-party computation and zero-knowledge proofs require optimization with respect to a different metric: arithmetic complexity. In this paper we study the design of secure cryptographic algorithms optimized to minimize this metric. We begin by identifying the differences in the design space between such arithmetization-oriented ciphers and traditional ones, with particular emphasis on the available tools, efficiency metrics, and relevant cryptanalysis. This discussion highlights a crucial point --- the considerations for designing arithmetization-oriented ciphers are oftentimes different from the considerations arising in the design of software- and hardware-oriented ciphers. The natural next step is to identify sound principles to securely navigate this new terrain, and to materialize these principles into concrete designs. To this end, we present the Marvellous design strategy which provides a generic way to easily instantiate secure and efficient algorithms for this emerging domain. We then show two examples for families following this approach. These families --- Vision and Rescue --- are benchmarked with respect to three use cases: the ZK-STARK proof system, proof systems based on Rank-One Constraint Satisfaction (R1CS), and Multi-Party Computation (MPC). These benchmarks show that our algorithms achieve a highly compact algebraic description, and thus benefit the advanced cryptographic protocols that employ them. Evidence is provided that this is the case also in real-world implementations.
Fast, Furious and Insecure: Passive Keyless Entry and Start Systems in Modern Supercars 📺
The security of immobiliser and Remote Keyless Entry systems has been extensively studied over many years. Passive Keyless Entry and Start systems, which are currently deployed in luxury vehicles, have not received much attention besides relay attacks. In this work we fully reverse engineer a Passive Keyless Entry and Start system and perform a thorough analysis of its security.Our research reveals several security weaknesses. Specifically, we document the use of an inadequate proprietary cipher using 40-bit keys, the lack of mutual authentication in the challenge-response protocol, no firmware readout protection features enabled and the absence of security partitioning.In order to validate our findings, we implement a full proof of concept attack allowing us to clone a Tesla Model S key fob in a matter of seconds with low cost commercial off the shelf equipment. Our findings most likely apply to other manufacturers of luxury vehicles including McLaren, Karma and Triumph motorcycles as they all use the same system developed by Pektron.
Cryptanalysis of MORUS
MORUS is a high-performance authenticated encryption algorithm submitted to the CAESAR competition, and recently selected as a finalist. There are three versions of MORUS: MORUS-640 with a 128-bit key, and MORUS-1280 with 128-bit or 256-bit keys. For all versions the security claim for confidentiality matches the key size. In this paper, we analyze the components of this algorithm (initialization, state update and tag generation), and report several results.As our main result, we present a linear correlation in the keystream of full MORUS, which can be used to distinguish its output from random and to recover some plaintext bits in the broadcast setting. For MORUS-1280, the correlation is $$2^{-76}$$, which can be exploited after around $$2^{152}$$ encryptions, less than what would be expected for a 256-bit secure cipher. For MORUS-640, the same attack results in a correlation of $$2^{-73}$$, which does not violate the security claims of the cipher.To identify this correlation, we make use of rotational invariants in MORUS using linear masks that are invariant by word-rotations of the state. This motivates us to introduce single-word versions of MORUS called MiniMORUS, which simplifies the analysis. The attack has been implemented and verified on MiniMORUS, where it yields a correlation of $$2^{-16}$$.We also study reduced versions of the initialization and finalization of MORUS, aiming to evaluate the security margin of these components. We show a forgery attack when finalization is reduced from 10 steps to 3, and a key-recovery attack in the nonce-misuse setting when initialization is reduced from 16 steps to 10. These additional results do not threaten the full MORUS, but studying all aspects of the design is useful to understand its strengths and weaknesses.
Cryptanalysis of GOST2
GOST 28147 is a 256-bit key 64-bit block cipher developed by the USSR, later adopted by the Russian government as a national standard. In 2010, GOST was suggested to be included in ISO/IEC 18033-3, but was rejected due to weaknesses found in its key schedule. In 2015, a new version of GOST was suggested with the purpose of mitigating such attacks. In this paper, we show that similar weaknesses exist in the new version as well. More specifically, we present a fixed-point attack on the full cipher with time complexity of 2237 encryptions. We also present a reflection attack with time complexity of 2192 for a key that is chosen from a class of 2224 weak keys. Finally, we discuss an impossible reflection attack which improves on exhaustive search by a factor of 2e, and several possible related-key attacks.
Rotational-XOR Cryptanalysis of Reduced-round SPECK
In this paper we formulate a SAT/SMT model for Rotational-XOR (RX) cryptanalysis in ARX primitives for the first time. The model is successfully applied to the block cipher family Speck, and distinguishers covering more rounds than previously are found, as well as RX-characteristics requiring less data to detect. In particular, we present distinguishers for 10, 11 and 12 rounds for Speck32/64 which have better probabilities than the previously known 9-round differential characteristic, for a certain weak key class. For versions of Speck48, we present several distinguishers, among which the longest one covering 15 rounds, while the previously best differential characteristic only covered 11.
Rotational Cryptanalysis in the Presence of Constants
Tomer Ashur Yunwen Liu
Rotational cryptanalysis is a statistical method for attacking ARX constructions. It was previously shown that ARX-C, i.e., ARX with the injection of constants can be used to implement any function. In this paper we investigate how rotational cryptanalysis is affected when constants are injected into the state. We introduce the notion of an RX-difference, generalizing the idea of a rotational difference. We show how RX-differences behave around modular addition, and give a formula to calculate their transition probability. We experimentally verify the formula using Speck32/64, and present a 7-round distinguisher based on RX-differences. We then discuss two types of constants: round constants, and constants which are the result of using a fixed key, and provide recommendations to designers for optimal choice of parameters.

Program Committees

FSE 2020