International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Sina Shiehian

Publications

Year
Venue
Title
2019
CRYPTO
Noninteractive Zero Knowledge for NP from (Plain) Learning with Errors 📺
Chris Peikert Sina Shiehian
We finally close the long-standing problem of constructing a noninteractive zero-knowledge (NIZK) proof system for any NP language with security based on the plain Learning With Errors (LWE) problem, and thereby on worst-case lattice problems. Our proof system instantiates the framework recently developed by Canetti et al.  [EUROCRYPT’18], Holmgren and Lombardi [FOCS’18], and Canetti et al.  [STOC’19] for soundly applying the Fiat–Shamir transform using a hash function family that is correlation intractable for a suitable class of relations. Previously, such hash families were based either on “exotic” assumptions (e.g., indistinguishability obfuscation or optimal hardness of certain LWE variants) or, more recently, on the existence of circularly secure fully homomorphic encryption (FHE). However, none of these assumptions are known to be implied by plain LWE or worst-case hardness.Our main technical contribution is a hash family that is correlation intractable for arbitrary size-S circuits, for any polynomially bounded S, based on plain LWE (with small polynomial approximation factors). The construction combines two novel ingredients: a correlation-intractable hash family for log-depth circuits based on LWE (or even the potentially harder Short Integer Solution problem), and a “bootstrapping” transform that uses (leveled) FHE to promote correlation intractability for the FHE decryption circuit to arbitrary (bounded) circuits. Our construction can be instantiated in two possible “modes,” yielding a NIZK that is either computationally sound and statistically zero knowledge in the common random string model, or vice-versa in the common reference string model.
2018
PKC
Privately Constraining and Programming PRFs, the LWE Way
Chris Peikert Sina Shiehian
Constrained pseudorandom functions allow for delegating “constrained” secret keys that let one compute the function at certain authorized inputs—as specified by a constraining predicate—while keeping the function value at unauthorized inputs pseudorandom. In the constraint-hiding variant, the constrained key hides the predicate. On top of this, programmable variants allow the delegator to explicitly set the output values yielded by the delegated key for a particular set of unauthorized inputs.Recent years have seen rapid progress on applications and constructions of these objects for progressively richer constraint classes, resulting most recently in constraint-hiding constrained PRFs for arbitrary polynomial-time constraints from Learning With Errors (LWE) [Brakerski, Tsabary, Vaikuntanathan, and Wee, TCC’17], and privately programmable PRFs from indistinguishability obfuscation (iO) [Boneh, Lewi, and Wu, PKC’17].In this work we give a unified approach for constructing both of the above kinds of PRFs from LWE with subexponential $$\exp (n^{\varepsilon })$$exp(nε) approximation factors. Our constructions follow straightforwardly from a new notion we call a shift-hiding shiftable function, which allows for deriving a key for the sum of the original function and any desired hidden shift function. In particular, we obtain the first privately programmable PRFs from non-iO assumptions.
2016
TCC

Coauthors

Chris Peikert (3)