International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Victor Shoup

Publications

Year
Venue
Title
2020
TCC
Security analysis of SPAKE2+ 📺
Victor Shoup
We show that a slight variant of Protocol SPAKE2+, which was presented but not analyzed in [Cash, Kiltz, Shoup 2008], is a secure *asymmetric* password-authenticated key exchange protocol (PAKE), meaning that the protocol still provides good security guarantees even if a server is compromised and the password file stored on the server is leaked to an adversary. The analysis is done in the UC framework (i.e., a simulation-based security model), under the computational Diffie-Hellman (CDH) assumption, and modeling certain hash functions as random oracles. The main difference between our variant and the original Protocol SPAKE2+ is that our variant includes standard key confirmation flows; also, adding these flows allows some slight simplification to the remainder of the protocol. Along the way, we also (i) provide the first proof (under the same assumptions) that a slight variant of Protocol SPAKE2 from [Abdalla, Pointcheval 2005] is a secure *symmetric* PAKE in the UC framework (previous security proofs were all in the weaker BPR framework [Bellare, Pointcheval, Rogaway 2000]); (ii) provide a proof (under very similar assumptions) that a variant of Protocol SPAKE2+ that is currently being standardized is also a secure asymmetric PAKE; (iii) repair several problems in earlier UC formulations of secure symmetric and asymmetric PAKE.
2018
CRYPTO
Faster Homomorphic Linear Transformations in HElib 📺
Shai Halevi Victor Shoup
HElib is a software library that implements homomorphic encryption (HE), with a focus on effective use of “packed” ciphertexts. An important operation is applying a known linear map to a vector of encrypted data. In this paper, we describe several algorithmic improvements that significantly speed up this operation: in our experiments, our new algorithms are 30–75 times faster than those previously implemented in HElib for typical parameters.One application that can benefit from faster linear transformations is bootstrapping (in particular, “thin bootstrapping” as described in [Chen and Han, Eurocrypt 2018]). In some settings, our new algorithms for linear transformations result in a $$6{\times }$$6× speedup for the entire thin bootstrapping operation.Our techniques also reduce the size of the large public evaluation key, often using 33%–50% less space than the previous HElib implementation. We also implemented a new tradeoff that enables a drastic reduction in size, resulting in a $$25{\times }$$25× factor or more for some parameters, paying only a penalty of a 2–$$4{\times }$$4× times slowdown in running time (and giving up some parallelization opportunities).
2015
JOFC
2015
EUROCRYPT
2014
CRYPTO
Algorithms in HElib 📺
Shai Halevi Victor Shoup
2014
EPRINT
2011
ASIACRYPT
2010
EPRINT
Simple and Efficient Public-Key Encryption from Computational Diffie-Hellman in the Standard Model
This paper proposes practical chosen-ciphertext secure public-key encryption systems that are provably secure under the computational Diffie-Hellman assumption, in the standard model. Our schemes are conceptually simpler and more efficient than previous constructions. We also show that in bilinear groups the size of the public-key can be shrunk from n to 2\sqrt{n} group elements, where n is the security parameter.
2010
PKC
2010
JOFC
2010
CRYPTO
2010
EPRINT
Credential Authenticated Identification and Key Exchange
Secure two-party authentication and key exchange are fundamental problems. Traditionally, the parties authenticate each other by means of their identities, using a public-key infrastucture (PKI). However, this is not always feasible or desirable: an appropriate PKI may not be available, or the parties may want to remain anonymous, and not reveal their identities. To address these needs, we introduce the notions of credential-authenticated identification (CAID) and key exchange (CAKE), where the compatibility of the parties' \emph{credentials} is the criteria for authentication, rather than the parties' \emph{identities} relative to some PKI. We formalize CAID and CAKE in the universal composability (UC) framework, with natural ideal functionalities, and we give practical, modularly designed protocol realizations. We prove all our protocols UC-secure in the adaptive corruption model with erasures, assuming a common reference string (CRS). The proofs are based on standard cryptographic assumptions and do not rely on random oracles. CAKE includes password-authenticated key exchange (PAKE) as a special case, and we present two new PAKE protocols. The first one is interesting in that it is uses completly different techniques than known practical PAKE protocols, and also achieves UC-security in the adaptive corruption model with erasures; the second one is the first practical PAKE protocol that provides a meaningful form of resilience against server compromise without relying on random oracles.
2009
JOFC
2009
EUROCRYPT
2008
EUROCRYPT
2008
EPRINT
The Twin Diffie-Hellman Problem and Applications
David Cash Eike Kiltz Victor Shoup
We propose a new computational problem called the twin Diffie-Hellman problem. This problem is closely related to the usual (computational) Diffie-Hellman problem and can be used in many of the same cryptographic constructions that are based on the Diffie-Hellman problem. Moreover, the twin Diffie-Hellman problem is at least as hard as the ordinary Diffie-Hellman problem. However, we are able to show that the twin Diffie-Hellman problem remains hard, even in the presence of a decision oracle that recognizes solutions to the problem — this is a feature not enjoyed by the ordinary Diffie-Hellman problem. In particular, we show how to build a certain “trapdoor test” that allows us to effectively answer such decision oracle queries without knowing any of the corresponding discrete logarithms. Our new techniques have many applications. As one such application, we present a new variant of ElGamal encryption with very short ciphertexts, and with a very simple and tight security proof, in the random oracle model, under the assumption that the ordinary Diffie-Hellman problem is hard. We present several other applications as well, including: a new variant of Diffie and Hellman’s non-interactive key exchange protocol; a new variant of Cramer-Shoup encryption, with a very simple proof in the standard model; a new variant of Boneh-Franklin identity-based encryption, with very short ciphertexts; a more robust version of a password-authenticated key exchange protocol of Abdalla and Pointcheval.
2008
CRYPTO
2008
PKC
2008
EPRINT
A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks
Recently, at Crypto 2008, Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) solved the long-standing open problem of ``circular encryption,'' by presenting a public key encryption scheme and proving that it is semantically secure against key dependent chosen plaintext attack (KDM-CPA security) under standard assumptions (and without resorting to random oracles). However, they left as an open problem that of designing an encryption scheme that \emph{simultaneously} provides security against both key dependent chosen plaintext \emph{and} adaptive chosen ciphertext attack (KDM-CCA2 security). In this paper, we solve this problem. First, we show that by applying the Naor-Yung ``double encryption'' paradigm, one can combine any KDM-CPA secure scheme with any (ordinary) CCA2 secure scheme, along with an appropriate non-interactive zero-knowledge proof, to obtain a KDM-CCA2 secure scheme. Second, we give a concrete instantiation that makes use the above KDM-CPA secure scheme of BHHO, along with a generalization of the Cramer-Shoup CCA2 secure encryption scheme, and recently developed pairing-based NIZK proof systems. This instantiation increases the complexity of the BHHO scheme by just a small constant factor.
2006
EPRINT
Stateful Public-Key Cryptosystems: How to Encrypt with One 160-bit Exponentiation
We show how to significantly speed-up the encryption portion of some public-key cryptosystems by the simple expedient of allowing a sender to maintain state that is re-used across different encryptions. In particular we present stateful versions of the DHIES and Kurosawa-Desmedt schemes that each use only one exponentiation to encrypt, as opposed to two and three respectively in the original schemes, yielding the fastest discrete-log based public-key encryption schemes known in the random-oracle and standard models respectively. The schemes are proven to meet an appropriate extension of the standard definition of IND-CCA security that takes into account novel types of attacks possible in the stateful setting.
2005
EUROCRYPT
2005
JOFC
2004
EUROCRYPT
2004
EPRINT
Sequences of games: a tool for taming complexity in security proofs
Victor Shoup
This paper is a brief tutorial on a technique for structuring security proofs as sequences of games.
2004
EPRINT
A Note on An Encryption Scheme of Kurosawa and Desmedt
Rosario Gennaro Victor Shoup
Recently Kurosawa and Desmedt presented a new hybrid encryption scheme which is secure against adaptive chosen-ciphertext attack. Their scheme is a modification of the Cramer-Shoup encryption scheme. Its major advantage with respect to Cramer-Shoup is that it saves the computation of one exponentiation and produces shorter ciphertexts. However, the proof presented by Kurosawa and Desmedt relies on the use of information-theoretic key derivation and message authentication functions. In this note we present a different proof of security which shows that the Kurosawa-Desmedt scheme can be instantiated with any computationally secure key derivation and message authentication functions, thus extending the applicability of their paradigm, and improving its efficiency.
2004
CRYPTO
2003
CRYPTO
2002
CRYPTO
2002
EUROCRYPT
2002
EPRINT
Efficient Computation Modulo a Shared Secret with Application to the Generation of Shared Safe-Prime Products
We present a new protocol for efficient distributed computation modulo a shared secret. We further present a protocol to distributively generate a random shared prime or safe prime that is much more efficient than previously known methods. This allows to distributively compute shared RSA keys, where the modulus is the product of two safe primes, much more efficiently than was previously known.
2002
JOFC
OAEP Reconsidered
Victor Shoup
2002
JOFC
2002
EPRINT
Practical Verifiable Encryption and Decryption of Discrete Logarithms
Jan Camenisch Victor Shoup
This paper presents a variant of the new public key encryption of Cramer and Shoup based on Paillier's decision composite residuosity assumption, along with an efficient protocol for verifiable encryption of discrete logarithms. This is the first verifiable encryption system that provides chosen ciphertext security and avoids inefficient cut-and-choose proofs. This has numerous applications, including fair exchange and key escrow. We also present efficient protocols for verifiable decryption, which has applications to, e.g., confirmer signatures. The latter protocols build on a new protocol for proving whether or not two discrete logarithms are equal that is of independent interest. Prior such protocols were either inefficient or not zero-knowledge.
2001
CRYPTO
2001
CRYPTO
OAEP Reconsidered
Victor Shoup
2001
EPRINT
Optimistic Asynchronous Atomic Broadcast
Klaus Kursawe Victor Shoup
This paper presents a new protocol for atomic broadcast in an asynchronous network with a maximal number of Byzantine failures. It guarantees both safety and liveness without making any timing assumptions or using any type of failure detector. Under normal circumstances, the protocol runs in an optimistic mode, with extremely low message and computational complexity -- essentially, just performing a Bracha broadcast for each request. In particular, no potentially expensive public-key cryptographic operations are used. In rare circumstances, the protocol may briefly switch to a pessimistic mode, where both the message and computational complexity are significantly higher than in the optimistic mode, but are still reasonable.
2001
EPRINT
Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack
Ronald Cramer Victor Shoup
A new public key encryption scheme, along with several variants, is proposed and analyzed. The scheme and its variants are quite practical, and are proved secure against adaptive chosen ciphertext attack under standard intractability assumptions. These appear to be the first public-key encryption schemes in the literature that are simultaneously practical and provably secure.
2001
EPRINT
Secure and Efficient Asynchronous Broadcast Protocols
Reliable broadcast protocols are a fundamental building block for implementing replication in fault-tolerant distributed systems. This paper addresses secure service replication in an asynchronous environment with a static set of servers, where a malicious adversary may corrupt up to a threshold of servers and controls the network. We develop a formal model using concepts from modern cryptography, present modular definitions for several broadcast problems, including reliable, atomic, and secure causal broadcast, and present protocols implementing them. Reliable broadcast is a basic primitive, also known as the Byzantine generals problem, providing agreement on a delivered message. Atomic broadcast imposes additionally a total order on all delivered messages. We present a randomized atomic broadcast protocol based on a new, efficient multi-valued asynchronous Byzantine agreement primitive with an external validity condition. Apparently, no such efficient asynchronous atomic broadcast protocol maintaining liveness and safety in the Byzantine model has appeared previously in the literature. Secure causal broadcast extends atomic broadcast by encryption to guarantee a causal order among the delivered messages. Threshold-cryptographic protocols for signatures, encryption, and coin-tossing also play an important role.
2001
EPRINT
A Proposal for an ISO Standard for Public Key Encryption
Victor Shoup
This document is an initial proposal for a draft for a forthcoming ISO standard on public-key encryption. It is hoped that this proposal will serve as a basis for discussion, from which a consensus for a standard may be formed.
2001
EPRINT
Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption
Ronald Cramer Victor Shoup
We present several new and fairly practical public-key encryption schemes and prove them secure against adaptive chosen ciphertext attack. One scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption, while another is based in the classical Quadratic Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our schemes does not rely on the Random Oracle model. We also introduce the notion of a universal hash proof system. Essentially, this is a special kind of non-interactive zero-knowledge proof system for an NP language. We do not show that universal hash proof systems exist for all NP languages, but we do show how to construct very efficient universal hash proof systems for a general class of group-theoretic language membership problems. Given an efficient universal hash proof system for a language with certain natural cryptographic indistinguishability properties, we show how to construct an efficient public-key encryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our construction only uses the universal hash proof systemas a primitive: no other primitives are required, although even more efficient encryption schemes can be obtained by using hash functions with appropriate collision-resistance properties. We show how to construct efficient universal hash proof systems for languages related to the DCR and QR assumptions. From these we get corresponding public-key encryption schemes that are secure under these assumptions. We also show that the Cramer-Shoup encryption scheme (which up until now was the only practical encryption scheme that could be proved secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the Decision Diffie-Hellman assumption) is also a special case of our general theory.
2000
EUROCRYPT
2000
EUROCRYPT
2000
EUROCRYPT
2000
EPRINT
ACE: The Advanced Cryptographic Engine
Thomas Schweinberger Victor Shoup
This document describes the Advanced Cryptographic Engine (ACE). It specifies a public key encryption scheme as well as a digital signature scheme with enough detail to ensure interoperability between different implementations. These schemes are almost as efficient as commercially used schemes, yet unlike such schemes, can be proven secure under reasonable and well-defined intractability assumptions. A concrete security analysis of both schemes is presented.
2000
EPRINT
Random Oracles in Constantinople: Practical Asynchronous Byzantine Agreement using Cryptography
Byzantine agreement requires a set of parties in a distributed system to agree on a value even if some parties are corrupted. A new protocol for Byzantine agreement in a completely asynchronous network is presented that makes use of cryptography, specifically of threshold signatures and coin-tossing protocols. These cryptographic protocols have practical and provably secure implementations in the ``random oracle'' model. In particular, a coin-tossing protocol based on the Diffie-Hellman problem is presented and analyzed. The resulting asynchronous Byzantine agreement protocol is both practical and theoretically nearly optimal because it tolerates the maximum number of corrupted parties, runs in constant expected time, has message and communication complexity close to the optimum, and uses a trusted dealer only in a setup phase, after which it can process a virtually unlimited number of transactions. The protocol is formulated as a transaction processing service in a cryptographic security model, which differs from the standard information-theoretic formalization and may be of independent interest.
2000
EPRINT
OAEP Reconsidered
Victor Shoup
The OAEP encryption scheme was introduced by Bellare and Rogaway at Eurocrypt '94. It converts any trapdoor permutation scheme into a public-key encryption scheme. OAEP is widely believed to provide resistance against adaptive chosen ciphertext attack. The main justification for this belief is a supposed proof of security in the random oracle model, assuming the underlying trapdoor permutation scheme is one way. This paper shows conclusively that this justification is invalid. First, it observes that there appears to be a non-trivial gap in the OAEP security proof. Second, it proves that this gap cannot be filled, in the sense that there can be no standard "black box" security reduction for OAEP. This is done by proving that there exists an oracle relative to which the general OAEP scheme is insecure. The paper also presents a new scheme OAEP+, along with a complete proof of security in the random oracle model. OAEP+ is essentially just as efficient as OAEP, and even has a tighter security reduction. It should be stressed that these results do not imply that a particular instantiation of OAEP, such as RSA-OAEP, is insecure. They simply undermine the original justification for its security. In fact, it turns out -- essentially by accident, rather than by design -- that RSA-OAEP is secure in the random oracle model; however, this fact relies on special algebraic properties of the RSA function, and not on the security of the general OAEP scheme.
1999
EPRINT
Signature Schemes Based on the Strong RSA Assumption
Ronald Cramer Victor Shoup
We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the so-called Strong RSA Assumption. Moreover, a hash function can be incorporated into the scheme in such a way that it is also secure in the random oracle model under the standard RSA Assumption.
1999
EPRINT
Practical Threshold Signatures
Victor Shoup
We present an RSA threshold signature scheme. The scheme enjoys the following properties: it is unforgeable and robust; in the random oracle model, assuming the RSA problem is hard; signature share generation and verification is completely non-interactive; the size of an individual signature share is bounded by a constant times the size of the RSA modulus.
1999
EPRINT
A Composition Theorem for Universal One-Way Hash Functions
Victor Shoup
In this paper we present a new scheme for constructing universal one-way hash functions that hash arbitrarily long messages out of universal one-way hash functions that hash fixed-length messages. The new construction is extremely simple and is also very efficient, yielding shorter keys than previously proposed composition constructions.
1999
EPRINT
On Formal Models for Secure Key Exchange
Victor Shoup
A new formal security model for session key exchange protocols is proposed, and several efficient protocols are analyzed in this model. Our new model is in the style of multi-party simulatability: it specifies the service and security guarantees that a key exchange protocol should provide to higher-level protocols as a simple, natural, and intuitive interface to which a high-level protocol designer can program. The relationship between this new model and previously proposed models is explored, and in particular, several flaws and shortcomings in previously proposed models are discussed. The model also deals with anonymous users---that is, users who do not have public keys, but perhaps have passwords that can be used to authenticate themselves within a secure session.
1999
JOFC
1998
CRYPTO
1998
EUROCRYPT
1998
EUROCRYPT
1998
EPRINT
A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack
Ronald Cramer Victor Shoup
A new public key cryptosystem is presented that is provably secure against adaptive chosen ciphertext attack. The scheme is quite practical, and the proof of security relies only on standard intractability assumptions.
1997
EUROCRYPT
1997
EPRINT
Optimistic fair Exchange of Digital Signatures
We present a new protocol that allows two players to exchange digital signatures (including RSA and DSS) over the Internet in a fair way, so that either each player gets the other's signature, or neither player does. One obvious application is where the signatures represent items of value, for example, an electronic check or airline ticket; the protocol can also be adapted to exchange encrypted data. The protocol relies on a trusted third party, but is "optimistic," in that the third party is only needed in cases where one player attempts to cheat or simply crashes. This is an important property, as it greatly reduces the load on the third party, which in particular facilitates a more robust and secure implementation of the third party.
1996
CRYPTO
1996
EUROCRYPT
1996
EUROCRYPT
1996
EPRINT
Private Information Storage
Rafail Ostrovsky Victor Shoup
We consider the setting of hiding information through the use of multiple databases that do not interact with one another. Previously, in this setting solutions for retrieval of data in the efficient manner were given, where a user achieves this by interacting with all the databases. We consider the case of both writing and reading. While the case of reading was well studied before, the case of writing was previously completely open. In this paper, we show how to implement both read and write operations. As in the previous papers, we measure, as a function of k and n the amount of communication required between a user and all the databases for a single read/write operation, and achieve efficient read/write schemes. Moreover, we show a general reduction from reading database scheme to reading and writing database scheme, with the following guarantees: for any k, given a retrieval only k-database scheme with communication complexity R(k,n) we show a (k+1) reading and writing database scheme with total communication complexity O(R(k,n) * (log n)^{O(1)}). It should be stressed that prior to the current paper no trivial (i.e. sub-linear) bounds for private information storage were known.
1990
CRYPTO

Program Committees

TCC 2010
PKC 2008
TCC 2007
Crypto 2005 (Program chair)
Crypto 2003
Crypto 2000
Eurocrypt 1999
CHES 1999