## CryptoDB

### Matthieu Rivain

#### Publications

**Year**

**Venue**

**Title**

2022

CRYPTO

Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs
📺
Abstract

Zero-knowledge proofs of knowledge are useful tools to design signature schemes. The ongoing effort to build a quantum computer motivates the cryptography community to develop new secure cryptographic protocols based on quantum-hard cryptographic problems. One of the few directions is code-based cryptography for which the strongest problem is the syndrome decoding (SD) for random linear codes. This problem is known to be NP-hard and the cryptanalysis state of the art has been stable for many years. A zero-knowledge protocol for this problem was pioneered by Stern in 1993. Since its publication, many articles proposed optimizations, implementation, or variants.
In this paper, we introduce a new zero-knowledge proof for the syndrome decoding problem on random linear codes. Instead of using permutations like most of the existing protocols, we rely on the MPC-in-the-head paradigm in which we reduce the task of proving the low Hamming weight of the SD solution to proving some relations between specific polynomials. We propose a 5-round zero-knowledge protocol that proves the knowledge of a vector x such that y=Hx and \wt(x) <= w and which achieves a soundness error closed to 1/N for an arbitrary N.
While turning this protocol into a signature scheme, we achieve a signature size of 11-12 KB for a 128-bit security when relying on the hardness of the SD problem on binary fields. Using bigger fields (like \F_{2^8}), we can produce fast signatures of around 8 KB. This allows us to outperform Picnic3 and to be competitive with SPHINCS+, both post-quantum signature candidates in the ongoing NIST standardization effort. Moreover, our scheme outperforms all the existing code-based signature schemes for the common ``signature size + public key size'' metric.

2022

ASIACRYPT

Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection
📺
Abstract

We propose (honest verifier) zero-knowledge arguments for the modular subset sum problem. Previous combinatorial approaches, notably one due to Shamir, yield arguments with cubic communication complexity (in the security parameter). More recent methods, based on the MPC-in-the-head technique, also produce arguments with cubic communication complexity.
We improve this approach by using a secret-sharing over small integers (rather than modulo q) to reduce the size of the arguments and remove the prime modulus restriction. Since this sharing may reveal information on the secret subset, we introduce the idea of rejection to the MPC-in-the-head paradigm. Special care has to be taken to balance completeness and soundness and preserve zero-knowledge of our arguments. We combine this idea with two techniques to prove that the secret vector (which selects the subset) is well made of binary coordinates.
Our new protocols achieve an asymptotic improvement by producing arguments of quadratic size. This improvement is also practical: for a 256-bit modulus q, the best variant of our protocols yields 13KB arguments while previous proposals gave 1180KB arguments, for the best general protocol, and 122KB, for the best protocol restricted to prime modulus. Our techniques can also be applied to vectorial variants of the subset sum problem and in particular the inhomogeneous short integer solution (ISIS) problem for which they provide an efficient alternative to state-of-the-art protocols when the underlying ring is not small and NTT-friendly. We also show the application of our protocol to build efficient zero-knowledge arguments of plaintext and/or key knowledge in the context of fully-homomorphic encryption. When applied to the TFHE scheme, the obtained arguments are more than 20 times smaller than those obtained with previous protocols. Eventually, we use our technique to construct an efficient digital signature scheme based on a pseudo-random function due to Boneh, Halevi, and Howgrave-Graham.

2022

TCHES

High Order Side-Channel Security for Elliptic-Curve Implementations
Abstract

Elliptic-curve implementations protected with state-of-the-art countermeasures against side-channel attacks might still be vulnerable to advanced attacks that recover secret information from a single leakage trace. The effectiveness of these attacks is boosted by the emergence of deep learning techniques for side-channel analysis which relax the control or knowledge an adversary must have on the target implementation. In this paper, we provide generic countermeasures to withstand these attacks for a wide range of regular elliptic-curve implementations. We first introduce a framework to formally model a regular algebraic program which consists of a sequence of algebraic operations indexed by key-dependent values. We then introduce a generic countermeasure to protect these types of programs against advanced single-trace side-channel attacks. Our scheme achieves provable security in the noisy leakage model under a formal assumption on the leakage of randomized variables. To demonstrate the applicability of our solution, we provide concrete examples on several widely deployed scalar multiplication algorithms and report some benchmarks for a protected implementation on a smart card.

2021

EUROCRYPT

On the Power of Expansion: More Efficient Constructions in the Random Probing Model
📺
Abstract

The random probing model is a leakage model in which each wire of a circuit leaks with a given probability $p$. This model enjoys practical relevance thanks to a reduction to the noisy leakage model, which is admitted as the right formalization for power and electromagnetic side-channel attacks. In addition, the random probing model is much more convenient than the noisy leakage model to prove the security of masking schemes. In a recent work, Ananth, Ishai and Sahai (CRYPTO 2018) introduce a nice expansion strategy to construct random probing secure circuits. Their construction tolerates a leakage probability of $2^{-26}$, which is the first quantified achievable leakage probability in the random probing model. In a follow-up work, Bela\"id, Coron, Prouff, Rivain and Taleb (CRYPTO 2020) generalize their idea and put forward a complete and practical framework to generate random probing secure circuits. The so-called expanding compiler can bootstrap simple base gadgets as long as they satisfy a new security notion called \emph{random probing expandability} (RPE). They further provide an instantiation of the framework which tolerates a $2^{-8}$ leakage probability in complexity $\mathcal{O}(\kappa^{7.5})$ where $\kappa$ denotes the security parameter.
In this paper, we provide an in-depth analysis of the RPE security notion. We exhibit the first upper bounds for the main parameter of a RPE gadget, which is known as the \emph{amplification order}. We further show that the RPE notion can be made tighter and we exhibit strong connections between RPE and the \emph{strong non-interference} (SNI) composition notion. We then introduce the first generic constructions of gadgets achieving RPE for any number of shares and with nearly optimal amplification orders and provide an asymptotic analysis of such constructions. Last but not least, we introduce new concrete constructions of small gadgets achieving maximal amplification orders. This allows us to obtain much more efficient instantiations of the expanding compiler: we obtain a complexity of $\mathcal{O}(\kappa^{3.9})$ for a slightly better leakage probability, as well as $\mathcal{O}(\kappa^{3.2})$ for a slightly lower leakage probability.

2021

TCHES

Probing Security through Input-Output Separation and Revisited Quasilinear Masking
📺
Abstract

The probing security model is widely used to formally prove the security of masking schemes. Whenever a masked implementation can be proven secure in this model with a reasonable leakage rate, it is also provably secure in a realistic leakage model known as the noisy leakage model. This paper introduces a new framework for the composition of probing-secure circuits. We introduce the security notion of input-output separation (IOS) for a refresh gadget. From this notion, one can easily compose gadgets satisfying the classical probing security notion –which does not ensure composability on its own– to obtain a region probing secure circuit. Such a circuit is secure against an adversary placing up to t probes in each gadget composing the circuit, which ensures a tight reduction to the more realistic noisy leakage model. After introducing the notion and proving our composition theorem, we compare our approach to the composition approaches obtained with the (Strong) Non-Interference (S/NI) notions as well as the Probe-Isolating Non-Interference (PINI) notion. We further show that any uniform SNI gadget achieves the IOS security notion, while the converse is not true. We further describe a refresh gadget achieving the IOS property for any linear sharing with a quasilinear complexity Θ(n log n) and a O(1/ log n) leakage rate (for an n-size sharing). This refresh gadget is a simplified version of the quasilinear SNI refresh gadget proposed by Battistello, Coron, Prouff, and Zeitoun (ePrint 2016). As an application of our composition framework, we revisit the quasilinear-complexity masking scheme of Goudarzi, Joux and Rivain (Asiacrypt 2018). We improve this scheme by generalizing it to any base field (whereas the original proposal only applies to field with nth powers of unity) and by taking advantage of our composition approach. We further patch a flaw in the original security proof and extend it from the random probing model to the stronger region probing model. Finally, we present some application of this extended quasilinear masking scheme to AES and MiMC and compare the obtained performances.

2021

ASIACRYPT

Dynamic Random Probing Expansion with Quasi Linear Asymptotic Complexity
📺
Abstract

The masking countermeasure is widely used to protect cryptographic implementations against side-channel attacks. While many masking schemes are shown to be secure in the widely deployed probing model, the latter raised a number of concerns regarding its relevance in practice. Offering the adversary the knowledge of a fixed number of intermediate variables, it does not capture the so-called horizontal attacks which exploit the repeated manipulation of sensitive variables. Therefore, recent works have focused on the random probing model in which each computed variable leaks with some given probability p. This model benefits from fitting better the reality of the embedded devices. In particular, Belaïd, Coron, Prouff, Rivain, and Taleb (CRYPTO 2020) introduced a framework to generate random probing circuits. Their compiler somehow extends base gadgets as soon as they satisfy a notion called random probing expandability (RPE). A subsequent work from Belaïd, Rivain, and Taleb (EUROCRYPT 2021) went a step forward with tighter properties and improved complexities. In particular, their construction reaches a complexity of O(κ^{3.9}), for a κ-bit security, while tolerating a leakage probability of p = 2^{−7.5}.
In this paper, we generalize the random probing expansion approach by considering a dynamic choice of the base gadgets at each step in the expansion. This approach makes it possible to use gadgets with high number of shares –which enjoy better asymptotic complexity in the expansion framework– while still tolerating the best leakage rate usually obtained for small gadgets. We investigate strategies for the choice of the sequence of compilers and show that it can reduce the complexity of an AES implementation by a factor 10. We also significantly improve the asymptotic complexity of the expanding compiler by exhibiting new asymptotic gadget constructions. Specifically, we introduce RPE gadgets for linear operations featuring a quasi-linear complexity, as well as, an RPE multiplication gadget with linear number of multiplications. These new gadgets drop the complexity of the expanding compiler from quadratic to quasi-linear.

2020

EUROCRYPT

Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Implementations
📺
Abstract

Cryptographic implementations deployed in real world devices often aim at (provable) security against the powerful class of side-channel attacks while keeping reasonable performances. Last year at Asiacrypt, a new formal verification tool named tightPROVE was put forward to exactly determine whether a masked implementation is secure in the well-deployed probing security model for any given security order t. Also recently, a compiler named Usuba was proposed to automatically generate bitsliced implementations of cryptographic primitives.
This paper goes one step further in the security and performances achievements with a new automatic tool named Tornado. In a nutshell, from the high-level description of a cryptographic primitive, Tornado produces a functionally equivalent bitsliced masked implementation at any desired order proven secure in the probing model, but additionally in the so-called register probing model which much better fits the reality of software implementations. This framework is obtained by the integration of Usuba with tightPROVE+, which extends tightPROVE with the ability to verify the security of implementations in the register probing model and to fix them with inserting refresh gadgets at carefully chosen locations accordingly.
We demonstrate Tornado on the lightweight cryptographic primitives selected to the second round of the NIST competition and which somehow claimed to be masking friendly. It advantageously displays performances of the resulting masked implementations for several masking orders and prove their security in the register probing model.

2020

TCHES

Defeating State-of-the-Art White-Box Countermeasures with Advanced Gray-Box Attacks
📺
Abstract

The goal of white-box cryptography is to protect secret keys embedded in a cryptographic software deployed in an untrusted environment. In this article, we revisit state-of-the-art countermeasures employed in white-box cryptography, and we discuss possible ways to combine them. Then we analyze the different gray-box attack paths and study their performances in terms of required traces and computation time. Afterward, we propose a new paradigm for the gray-box attack against white-box cryptography, which exploits the data-dependency of the target implementation. We demonstrate that our approach provides substantial complexity improvements over the existing attacks. Finally, we showcase this new technique by breaking the three winning AES-128 white-box implementations from WhibOx 2019 white-box cryptography competition.

2020

TOSC

Pyjamask: Block Cipher and Authenticated Encryption with Highly Efficient Masked Implementation
📺
Abstract

This paper introduces Pyjamask, a new block cipher family and authenticated encryption proposal submitted to the NIST lightweight cryptography standardization process. Pyjamask targets side-channel resistance as one of its main goal. More precisely, it strongly minimizes the number of nonlinear gates used in its internal primitive in order to allow efficient masked implementations, especially for high-order masking in software. Compared to other block ciphers, our proposal has thus among the smallest number of binary AND computations per input bit at the time of writing. Even though Pyjamask minimizes such an important criterion, it remains rather lightweight and efficient, thanks to a general bitslice construction that enables to computation of all nonlinear gates in parallel. For authenticated encryption, we adopt the provably secure AEAD mode OCB which has been extensively studied and has the benefit to offer full parallelization. Of course, other block cipher-based modes can be considered as well if other performance profiles are to be targeted.The paper first gives the specification of the Pyjamask block cipher and the associated AEAD proposal. We also provide a detailed design rationale for the block cipher which is guided by our aim of software efficiency in the presence of high-order masking. The security of the design is analyzed against most commonly known cryptanalysis techniques. We finally describe efficient (masked) implementations in software and provide implementation results with aggressive performances for masking of very high orders (up to 128). We also provide a rough estimation of the hardware performances which remain much better than those of an AES round-based implementation.

2020

CRYPTO

Random Probing Security: Verification, Composition, Expansion and New Constructions
📺
Abstract

Masking countermeasure is among the most powerful countermeasures to counteract side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of such masked implementations. So far, the most widely used leakage model is the probing model defined by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks. Those attacks target the multiple manipulation of the same share to average a constant noise and recover the corresponding value. To capture a wider class of attacks another model was introduced and is referred to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with probability p. While this model much better reflects the physical reality of side channels, it requires more complex security proofs and does not yet come with practical constructions.
In this paper, we define the first framework dedicated to the random probing model. We provide an automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage probability. We also formalize a composition property for secure random probing gadgets and exhibit its relation to the strong non-interference (SNI) notion used in the context of probing security. We then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce a compiler that builds a random probing secure circuit from small base gadgets achieving a random probing expandability property. We instantiate this compiler with small gadgets for which we verify the expected properties directly from our automatic tool. Our construction can tolerate a leakage probability up to 2^−8, against 2^−25 for the previous construction, with a better asymptotic complexity.

2019

TCHES

Analysis and Improvement of Differential Computation Attacks against Internally-Encoded White-Box Implementations
📺
Abstract

White-box cryptography is the last security barrier for a cryptographic software implementation deployed in an untrusted environment. The principle of internal encodings is a commonly used white-box technique to protect block cipher implementations. It consists in representing an implementation as a network of look-up tables which are then encoded using randomly generated bijections (the internal encodings). When this approach is implemented based on nibble (i.e. 4-bit wide) encodings, the protected implementation has been shown to be vulnerable to differential computation analysis (DCA). The latter is essentially an adaptation of differential power analysis techniques to computation traces consisting of runtime information, e.g., memory accesses, of the target software. In order to thwart DCA, it has then been suggested to use wider encodings, and in particular byte encodings, at least to protect the outer rounds of the block cipher which are the prime targets of DCA.In this work, we provide an in-depth analysis of when and why DCA works. We pinpoint the properties of the target variables and the encodings that make the attack (in)feasible. In particular, we show that DCA can break encodings wider than 4-bit, such as byte encodings. Additionally, we propose new DCA-like attacks inspired from side-channel analysis techniques. Specifically, we describe a collision attack particularly effective against the internal encoding countermeasure. We also investigate mutual information analysis (MIA) which naturally applies in this context. Compared to the original DCA, these attacks are also passive and they require very limited knowledge of the attacked implementation, but they achieve significant improvements in terms of trace complexity. All the analyses of our work are experimentally backed up with various attack simulation results. We also verified the practicability of our analyses and attack techniques against a publicly available white-box AES implementation protected with byte encodings –which DCA has failed to break before– and against a “masked” white-box AES implementation –which intends to resist DCA.

2018

ASIACRYPT

Tight Private Circuits: Achieving Probing Security with the Least Refreshing
Abstract

Masking is a common countermeasure to secure implementations against side-channel attacks. In 2003, Ishai, Sahai, and Wagner introduced a formal security model, named $$t$$-probing model, which is now widely used to theoretically reason on the security of masked implementations. While many works have provided security proofs for small masked components, called gadgets, within this model, no formal method allowed to securely compose gadgets with a tight number of shares (namely, $$t+1$$) until recently. In 2016, Barthe et al. filled this gap with maskComp, a tool checking the security of masking schemes composed of several gadgets. This tool can achieve provable security with tight number of shares by inserting mask-refreshing gadgets at carefully selected locations. However the method is not tight in the sense that there exists some compositions of gadgets for which it cannot exhibit a flaw nor prove the security. As a result, it is overconservative and might insert more refresh gadgets than actually needed to ensure $$t$$-probing security. In this paper, we exhibit the first tool, referred to as tightPROVE, able to clearly state whether a shared circuit composed of standard gadgets (addition, multiplication, and refresh) is $$t$$-probing secure or not. Given such a composition, our tool either produces a probing-security proof (valid at any order) or exhibits a security flaw that directly implies a probing attack at a given order. Compared to maskComp, tightPROVE can drastically reduce the number of required refresh gadgets to get a probing security proof, and thus the randomness requirement for some secure shared circuits. We apply our method to a recent AES implementation secured with higher-order masking in bitslice and we show that we can save all the refresh gadgets involved in the s-box layer, which results in an significant performance gain.

2018

ASIACRYPT

How to Securely Compute with Noisy Leakage in Quasilinear Complexity
Abstract

Since their introduction in the late 90’s, side-channel attacks have been considered as a major threat against cryptographic implementations. This threat has raised the need for formal leakage models in which the security of implementations can be proved. At Eurocrypt 2013, Prouff and Rivain introduced the noisy leakage model which has been argued to soundly capture the physical reality of power and electromagnetic leakages. In their work, they also provide the first formal security proof for a masking scheme in the noisy leakage model. However their work has two important limitations: (i) the security proof relies on the existence of a leak-free component, (ii) the tolerated amount of information in the leakage (aka leakage rate) is of O(1 / n) where n is the security parameter (i.e. the number of shares in the underlying masking scheme). The first limitation was nicely tackled by Duc, Dziembowski and Faust one year later (Eurocrypt 2014). Their main contribution was to show a security reduction from the noisy leakage model to the conceptually simpler random-probing model. They were then able to prove the security of the well-known Ishai-Sahai-Wagner scheme (Crypto 2003) in the noisy leakage model. The second limitation was addressed in a paper by Andrychowicz, Dziembowski and Faust (Eurocrypt 2016) which makes use of a construction due to Ajtai (STOC 2011) to achieve security in the strong adaptive probing model with a leakage rate of $$O(1/\log n)$$. The authors argue that their result can be translated into the noisy leakage model with a leakage rate of O(1) by using secret sharing based on algebraic geometric codes. In terms of complexity, the protected program scales from |P| arithmetic instructions to $$\tilde{O}(|P| \, n^2)$$. According to the authors, this $$\tilde{O}(n^2)$$ blow-up could be reduced to $$\tilde{O}(n)$$ using packed secret sharing but no details are provided. Moreover, such an improvement would only be possible for a program of width at least linear in n. The issue of designing an explicit scheme achieving $$\tilde{O}(n)$$ complexity blow-up for any arithmetic program is hence left open.In this paper, we tackle the above issue: we show how to securely compute in the presence of noisy leakage with a leakage rate $$\tilde{O}(1)$$ and complexity blow-up $$\tilde{O}(n)$$. Namely, we introduce a transform that turns any program P composed of arithmetic instructions on some filed $$\mathbb {F}$$ into a (functionally equivalent) program $$\varPi $$ composed of $$|\varPi | = O(|P| n \log n)$$ arithmetic instructions which can tolerate some (quasi-constant) amount of noisy leakage on its internal variables (while revealing negligible information). We use a polynomial encoding allowing quasilinear multiplication based on the fast Number Theoretic Transform (NTT). We first show that our scheme is secure in the random-probing model with leakage rate $$O(1/\log n)$$. Using the reduction by Duc et al. this result can be translated in the noisy leakage model with a $$O(1/|\mathbb {F}|^2 \log n)$$ leakage rate. However, a straight application of this reduction is not satisfactory since our construction requires $$|\mathbb {F}| = O(n)$$. In order to bypass this issue (which is shared with the construction of Andrychowicz et al.), we provide a generic security reduction from the noisy leakage model at the logical-instruction level to the random-probing model at the arithmetic level. This reduction allows us to prove the security of our construction in the noisy leakage model with leakage rate $$\tilde{O}(1)$$.

2017

CHES

Generalized Polynomial Decomposition for S-boxes with Application to Side-Channel Countermeasures
Abstract

Masking is a widespread countermeasure to protect implementations of block-ciphers against side-channel attacks. Several masking schemes have been proposed in the literature that rely on the efficient decomposition of the underlying s-box(es). We propose a generalized decomposition method for s-boxes that encompasses several previously proposed methods while providing new trade-offs. It allows to evaluate
$$n\lambda $$
-bit to
$$m\lambda $$
-bit s-boxes for any integers
$$n,m,\lambda \ge 1$$
by seeing it a sequence of mn-variate polynomials over
$$\mathbb {F}_{2^{\lambda }}$$
and by trying to minimize the number of multiplications over
$$\mathbb {F}_{2^{\lambda }}$$
.

2016

CHES

#### Program Committees

- CHES 2022
- Eurocrypt 2021
- CHES 2019
- CHES 2018 (Program chair)
- CHES 2018
- Asiacrypt 2017
- CHES 2017
- CHES 2016
- Eurocrypt 2016
- CHES 2014
- CHES 2013
- CHES 2012

#### Coauthors

- Lejla Batina (1)
- Sonia Belaïd (6)
- Claude Carlet (2)
- Jean-Sébastien Coron (4)
- Pierre-Evariste Dagand (1)
- Julien Doget (1)
- Emmanuelle Dottax (1)
- Thibauld Feneuil (2)
- Benedikt Gierlichs (1)
- Christophe Giraud (1)
- Louis Goubin (2)
- Dahmun Goudarzi (7)
- Jérémy Jean (1)
- Antoine Joux (2)
- Stefan Kölbl (1)
- Victor Lomné (1)
- Jules Maire (1)
- Darius Mercadier (1)
- Daniel Page (2)
- Thomas Peyrin (1)
- Thomas Prest (1)
- Emmanuel Prouff (12)
- Michaël Quisquater (1)
- Thomas Roche (4)
- Yu Sasaki (1)
- Siang Meng Sim (1)
- François-Xavier Standaert (1)
- Abdul Rahman Taleb (3)
- Adrian Thillard (1)
- Damien Vergnaud (4)
- Nicolas Veyrat-Charvillon (1)
- Srinivas Vivek (1)
- Junwei Wang (2)
- Raphaël Wintersdorff (1)