International Association for Cryptologic Research

International Association
for Cryptologic Research


Yashvanth Kondi


Guaranteed Output in O(sqrt(n)) Rounds for Round-Robin Sampling Protocols
We introduce a notion of round-robin secure sampling that captures several protocols in the literature, such as the "powers-of-tau" setup protocol for pairing-based polynomial commitments and zk-SNARKs, and certain verifiable mixnets. Due to their round-robin structure, protocols of this class inherently require n sequential broadcast rounds, where n is the number of participants. We describe how to compile them generically into protocols that require only O(sqrt(n)) broadcast rounds. Our compiled protocols guarantee output delivery against any dishonest majority. This stands in contrast to prior techniques, which require Omega(n) sequential broadcasts in most cases (and sometimes many more). Our compiled protocols permit a certain amount of adversarial bias in the output, as all sampling protocols with guaranteed output must, due to Cleve's impossibility result (STOC'86). We show that in the context of the aforementioned applications, this bias is harmless.
Threshold Schnorr with Stateless Deterministic Signing from Standard Assumptions 📺
Schnorr's signature scheme permits an elegant threshold signing protocol due to its linear signing equation. However each new signature consumes fresh randomness, which can be a major attack vector in practice. Sources of randomness in deployments are frequently either unreliable, or require state continuity, i.e. reliable fresh state resilient to rollbacks. State continuity is a notoriously difficult guarantee to achieve in practice, due to system crashes caused by software errors, malicious actors, or power supply interruptions (Parno et al., S&P '11). This is a non-issue for Schnorr variants such as EdDSA, which is specified to derive nonces deterministically as a function of the message and the secret key. However, it is challenging to translate these benefits to the threshold setting, specifically to construct a threshold Schnorr scheme where signing neither requires parties to consume fresh randomness nor update long-term secret state. In this work, we construct a dishonest majority threshold Schnorr protocol that enables such stateless deterministic nonce derivation using standardized block ciphers. Our core technical ingredients are new tools for the zero-knowledge from garbled circuits (ZKGC) paradigm to aid in verifying correct nonce derivation: - A mechanism based on UC Commitments that allows a prover to commit once to a witness, and prove an unbounded number of statements online with only cheap symmetric key operations. - A garbling gadget to translate intermediate garbled circuit wire labels to arithmetic encodings. A proof per our scheme requires only a small constant number of exponentiations.
Multiparty Generation of an RSA Modulus 📺
We present a new multiparty protocol for the distributed generation of biprime RSA moduli, with security against any subset of maliciously colluding parties assuming oblivious transfer and the hardness of factoring. Our protocol is highly modular, and its uppermost layer can be viewed as a template that generalizes the structure of prior works and leads to a simpler security proof. We introduce a combined sampling-and-sieving technique that eliminates both the inherent leakage in the approach of Frederiksen et al. (Crypto'18), and the dependence upon additively homomorphic encryption in the approach of Hazay et al. (JCrypt'19). We combine this technique with an efficient, privacy-free check to detect malicious behavior retroactively when a sampled candidate is not a biprime, and thereby overcome covert rejection-sampling attacks and achieve both asymptotic and concrete efficiency improvements over the previous state of the art.
Efficient Adaptively Secure Zero-Knowledge from Garbled Circuits
Zero-knowledge (ZK) protocols are undoubtedly among the central primitives in cryptography, lending their power to numerous applications such as secure computation, voting, auctions, and anonymous credentials to name a few. The study of efficient ZK protocols for non-algebraic statements has seen rapid progress in recent times, relying on secure computation techniques. The primary contribution of this work lies in constructing efficient UC-secure constant round ZK protocols from garbled circuits that are secure against adaptive corruptions, with communication linear in the size of the statement. We begin by showing that the practically efficient ZK protocol of Jawurek et al. (CCS 2013) is adaptively secure when the underlying oblivious transfer (OT) satisfies a mild adaptive security guarantee. We gain adaptive security with little to no overhead over the static case. A conditional verification technique is then used to obtain a three-round adaptively secure zero-knowledge argument in the non-programmable random oracle model (NPROM). Our three-round protocol yields a proof size that is shorter than the known UC-secure practically-efficient schemes in the short-CRS model with the right choice of security parameters.We draw motivation from state-of-the-art non-interactive secure computation protocols and leveraging specifics of ZK functionality show a two-round protocol that achieves static security. It is a proof, while most known efficient ZK protocols and our three round protocol are only arguments.