International Association for Cryptologic Research

International Association
for Cryptologic Research


Lawrence Roy


SoftSpokenOT: Quieter OT Extension From Small-Field Silent VOLE in the Minicrypt Model
Lawrence Roy
Given a small number of base oblivious transfers (OTs), how does one generate a large number of extended OTs as efficiently as possible? The answer has long been the seminal work of IKNP (Ishai et al., Crypto 2003) and the family of protocols it inspired, which only use Minicrypt assumptions. Recently, Boyle et al. (Crypto 2019) proposed the Silent-OT technique that improves on IKNP, but at the cost of a much stronger, non-Minicrypt assumption: the learning parity with noise (LPN) assumption. We present SoftSpokenOT, the first OT extension to improve on IKNP's communication cost in the Minicrypt model. While IKNP requires security parameter $\lambda$ bits of communication for each OT, SoftSpokenOT only needs $\lambda / k$ bits, for any $k$, at the expense of requiring $2^{k-1} / k$ times the computation. For small values of $k$, this tradeoff is favorable since IKNP-style protocols are network-bound. We implemented SoftSpokenOT and found that our protocol gives almost a $5 \times$ speedup over IKNP in the LAN setting. Our technique is based on a novel silent protocol for vector oblivious linear evaluation (VOLE) over polynomial-sized fields. We created a framework to build maliciously secure 1-of-N OT extension from this VOLE, revisiting and improving the existing work for each step. Along the way, we found several flaws in the existing work, including a practical attack against the consistency check of Patra et al. (NDSS 2017).
Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits 📺
Mike Rosulek Lawrence Roy
We describe a garbling scheme for boolean circuits, in which XOR gates are free and AND gates require communication of $1.5\kappa + 5$ bits. This improves over the state-of-the-art ``half-gates'' scheme of Zahur, Rosulek, and Evans (Eurocrypt 2015), in which XOR gates are free and AND gates cost $2\kappa$ bits. The half-gates paper proved a lower bound of $2\kappa$ bits per AND gate, in a model that captured all known garbling techniques at the time. We bypass this lower bound with a novel technique that we call \textbf{slicing and dicing}, which involves slicing wire labels in half and operating separately on those halves. Ours is the first to bypass the lower bound while being fully compatible with free-XOR, making it a drop-in replacement for half-gates. Our construction is proven secure from a similar assumption to prior free-XOR garbling (circular correlation-robust hash), and uses only slightly more computation than half-gates.
Large Message Homomorphic Secret Sharing from DCR and Applications 📺
Jaspal Singh Lawrence Roy
We present the first homomorphic secret sharing (HSS) construction that simultaneously (1) has negligible correctness error, (2) supports integers from an exponentially large range, and (3) relies on an assumption not known to imply FHE --- specifically, the Decisional Composite Residuosity (DCR) assumption. This resolves an open question posed by Boyle, Gilboa, and Ishai (Crypto 2016). Homomorphic secret sharing is analogous to fully-homomorphic encryption, except the ciphertexts are shared across two non-colluding evaluators. Previous constructions of HSS either had non-negligible correctness error and polynomial-size plaintext space or were based on the stronger LWE assumption. We also present two applications of our technique: a multi-server ORAM with constant bandwidth overhead, and a rate-$1$ trapdoor hash function with negligible error rate.
Batching Base Oblivious Transfers 📺
Ian McQuoid Mike Rosulek Lawrence Roy
Protocols that make use of oblivious transfer (OT) rarely require just one instance. Usually a batch of OTs is required — notably, when generating base OTs for OT extension. There is a natural way to optimize 2-round OT protocols when generating a batch, by reusing certain protocol messages across all instances. In this work we show that this batch optimization is error-prone. We catalog many implementations and papers that have an incorrect treatment of this batch optimization, some of them leading to catastrophic leakage in OT extension protocols. We provide a full treatment of how to properly optimize recent 2-round OT protocols for the batch setting. Along the way we show several performance improvements to the OT protocol of McQuoid, Rosulek, and Roy (ACM CCS 2020). In particular, we show an extremely simple OT construction that may be of pedagogical interest.


Ian McQuoid (1)
Mike Rosulek (2)
Jaspal Singh (1)