International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Cyprien Delpech de Saint Guilhem

Publications

Year
Venue
Title
2024
PKC
New proof systems and an OPRF from CSIDH
Robi Pedersen Cyprien Delpech de Saint Guilhem
Isogeny computations in CSIDH (Asiacrypt 2018) are described using a commutative group G acting on the set of supersingular elliptic curves. The commutativity property gives CSIDH enough flexibility to allow the creation of many cryptographic primitives and protocols. Nevertheless, these operations are limited and more complex applications have not yet been proposed. When calling the composition of two group elements of G, \emph{addition}, our goal in this work is to explore exponentiation, multiplication with public elements, and multiplication between secret elements of this group. We first introduce a two-party interactive protocol for multiplication of secret group elements. Then, we explore zero-knowledge proofs of these different arithmetic operations. We present two types of approaches, using either standard sigma protocols or the MPC-in-the-Head paradigm. Most of our proofs need a trusted setup, which can be removed in the MPC-in-the-Head setting using cut-and-choose techniques. We conclude this work by presenting an oblivious pseudorandom function based on our new framework, that is competitive with current state-of-the-art designs.
2023
CRYPTO
Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
We present a new method for transforming zero-knowledge protocols in the designated verifier setting into public-coin protocols, which can be made non-interactive and publicly verifiable. Our transformation applies to a large class of ZK protocols based on oblivious transfer. In particular, we show that it can be applied to recent, fast protocols based on vector oblivious linear evaluation (VOLE), with a technique we call VOLE-in-the-head, upgrading these protocols to support public verifiability. Our resulting ZK protocols have linear proof size, and are simpler, smaller and faster than related approaches based on MPC-in-the-head. To build VOLE-in-the-head while supporting both binary circuits and large finite fields, we develop several new technical tools. One of these is a new proof of security for the SoftSpokenOT protocol (Crypto 2022), which generalizes it to produce certain types of VOLE correlations over large fields. Secondly, we present a new ZK protocol that is tailored to take advantage of this form of VOLE, which leads to a publicly verifiable VOLE-in-the-head protocol with only 2x more communication than the best, designated-verifier VOLE-based protocols. We analyze the soundness of our approach when made non-interactive using the Fiat-Shamir transform, using round-by-round soundness. As an application of the resulting NIZK, we present FAEST, a post-quantum signature scheme based on AES. FAEST is the first AES-based signature scheme to be smaller than SPHINCS+, with signature sizes between 5.6 and 6.6kB at the 128-bit security level. Compared with the smallest version of SPHINCS+ (7.9kB), FAEST verification is slower, but the signing times are between 8x and 40x faster.
2021
EUROCRYPT
Compact, Efficient and UC-Secure Isogeny-Based Oblivious Transfer 📺
Yi-Fu Lai Steven D. Galbraith Cyprien Delpech de Saint Guilhem
Oblivious transfer (OT) is an essential cryptographic tool that can serve as a building block for almost all secure multiparty functionalities. The strongest security notion against malicious adversaries is universal composability (UC-secure). An important goal is to have post-quantum OT protocols. One area of interest for post-quantum cryptography is isogeny-based crypto. Isogeny-based cryptography has some similarities to Diffie-Hellman, but lacks some algebraic properties that are needed for discrete-log-based OT protocols. Hence it is not always possible to directly adapt existing protocols to the isogeny setting. We propose the first practical isogeny-based UC-secure oblivious transfer protocol in the presence of malicious adversaries. Our scheme uses the CSIDH framework and does not have an analogue in the Diffie-Hellman setting. The scheme consists of a constant number of isogeny computations. The underlying computational assumption is a problem that we call the computational reciprocal CSIDH problem, and that we prove polynomial-time equivalent to the computational CSIDH problem.
2021
ASIACRYPT
Séta: Supersingular Encryption from Torsion Attacks 📺
We present Séta, a new family of public-key encryption schemes with post-quantum security based on isogenies of supersingular elliptic curves. It is constructed from a new family of trapdoor one-way functions, where the inversion algorithm uses Petit's so called \emph{torsion attacks} on SIDH to compute an isogeny between supersingular elliptic curves given an endomorphism of the starting curve and images of torsion points. We prove the OW-CPA security of S\'eta and present an IND-CCA variant using the post-quantum OAEP transformation. Several variants for key generation are explored together with their impact on the selection of parameters, such as the base prime of the scheme. We furthermore formalise an ``uber'' isogeny assumption framework which aims to generalize computational isogeny problems encountered in schemes including SIDH, CSDIH, OSIDH and ours. Finally, we carefully select parameters to achieve a balance between security and run-times and present experimental results from our implementation.