International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Damiano Abram

Publications

Year
Venue
Title
2022
PKC
Low-Communication Multiparty Triple Generation for SPDZ from Ring-LPN 📺
Damiano Abram Peter Scholl
The SPDZ protocol for multi-party computation relies on a correlated randomness setup consisting of authenticated, multiplication triples. A recent line of work by Boyle et al. (Crypto 2019, Crypto 2020) has investigated the possibility of producing this correlated randomness in a \emph{silent preprocessing} phase, which involves a ``small'' setup protocol with less communication than the total size of the triples being produced. These works do this using a tool called a \emph{pseudorandom correlation generator} (PCG), which allows a large batch of correlated randomness to be compressed into a set of smaller, correlated seeds. However, existing methods for compressing SPDZ triples only apply to the 2-party setting. In this work, we construct a PCG for producing SPDZ triples over large prime fields in the multi-party setting. The security of our PCG is based on the ring-LPN assumption over fields, similar to the work of Boyle et al. (Crypto 2020) in the 2-party setting. We also present a corresponding, actively secure setup protocol, which can be used to generate the PCG seeds and instantiate SPDZ with a silent preprocessing phase. As a building block, which may be of independent interest, we construct a new type of 3-party distributed point function supporting outputs over arbitrary groups (including large prime order), as well as an efficient protocol for setting up our DPF keys with active security.
2022
EUROCRYPT
Distributed (Correlation) Samplers: How to Remove a Trusted Dealer in One Round 📺
Structured random strings (SRSs) and correlated randomness are important for many cryptographic protocols. In settings where interaction is expensive, it is desirable to obtain such randomness in as few rounds of communication as possible; ideally, simply by exchanging one reusable round of messages which can be considered public keys. In this paper, we describe how to generate any SRS or correlated randomness in such a single round of communication, using, among other things, indistinguishable obfuscation. We introduce what we call a distributed sampler, which enables n parties to sample a single public value (SRS) from any distribution. We construct a semi-malicious distributed sampler in the plain model, and use it to build a semi-malicious public- key PCF (Boyle et al., FOCS 2020) in the plain model. A public-key PCF can be thought of as a distributed correlation sampler; instead of producing a public SRS, it gives each party a private random value (where the values satisfy some correlation). We introduce a general technique called an anti-rusher which compiles any one-round protocol with semi-malicious security without inputs to a similar one-round protocol with active security by making use of a programmable random oracle. This gets us actively secure distributed samplers and public-key PCFs in the random oracle model. Finally, we explore some tradeoffs. Our first PCF construction is limited to reverse-sampleable correlations (where the random outputs of honest parties must be simulatable given the random outputs of corrupt parties); we additionally show a different construction without this limitation, but which does not allow parties to hold secret parameters of the correlation. We also describe how to avoid the use of a random oracle at the cost of relying on sub-exponentially secure indistinguishability obfuscation.
2022
CRYPTO
An Algebraic Framework for Silent Preprocessing with Trustless Setup and Active Security 📺
Recently, number-theoretic assumptions including DDH, DCR and QR have been used to build powerful tools for secure computation, in the form of homomorphic secret-sharing (HSS), which leads to secure two-party computation protocols with succinct communication, and pseudorandom correlation functions (PCFs), which allow non-interactive generation of a large quantity of correlated randomness. In this work, we present a group-theoretic framework for these classes of constructions, which unifies their approach to computing distributed discrete logarithms in various groups. We cast existing constructions in our framework, and also present new constructions, including one based on class groups of imaginary quadratic fields. This leads to the first construction of two-party homomorphic secret sharing for branching programs from class group assumptions. Using our framework, we also obtain pseudorandom correlation functions for generating oblivious transfer and vector-OLE correlations from number-theoretic assumptions. These have a trustless, public-key setup when instantiating our framework using class groups. Previously, such constructions either needed a trusted setup in the form of an RSA modulus with unknown factorisation, or relied on multi-key fully homomorphic encryption from the learning with errors assumption. We also show how to upgrade our constructions to achieve active security using appropriate zero-knowledge proofs. In the random oracle model, this leads to a one-round, actively secure protocol for setting up the PCF, as well as a 3-round, actively secure HSS-based protocol for secure two-party computation of branching programs with succinct communication.