CryptoDB
Elizabeth Crites
ORCID: 0000-0001-9992-1771
Publications
Year
Venue
Title
2025
CRYPTO
A Plausible Attack on the Adaptive Security of Threshold Schnorr Signatures
Abstract
The standard notion of security for threshold signature schemes is static security, where the set of corrupt parties is assumed to be fixed before protocol execution. In this model, the adversary may corrupt up to t−1 out of a threshold of t parties. A stronger notion of security for threshold signatures considers an adaptive adversary, who may corrupt parties dynamically based on its view of the protocol execution, learning the corrupted parties’ secret keys as well as their states. Adaptive security of threshold signatures has become an active area of research recently due to ongoing standardization efforts. Of particular interest is full adaptive security, the analogue of static security, where the adversary may adaptively corrupt a full t−1 parties.
We present a plausible attack on the full adaptive security of threshold Schnorr signature schemes with public key shares of the form pk_i = g^{sk_i}, where all secret keys sk_i lie on a polynomial. We show that a wide range of threshold Schnorr signature schemes, including all variants of FROST, Sparkle, and Lindell’22, cannot be proven fully adaptively secure without modifications or assuming the hardness of a search problem that we define in this work. We then prove a generalization that extends below t−1 adaptive corruptions.
2025
CRYPTO
On the Adaptive Security of FROST
Abstract
FROST and its variants are state-of-the-art protocols for threshold Schnorr signatures that are used in real-world applications. While static security of these protocols has been shown by several works, the security of these protocols under adaptive corruptions—where an adversary can choose which parties to corrupt at any time based on information it learns during protocol executions—has remained a notorious open problem that has received renewed attention due to recent standardization efforts for threshold schemes.
We show adaptive security (without erasures) of FROST and several variants under different corruption thresholds and computational assumptions. Let n be the total number of parties, t+1 the signing threshold, and t_c an upper bound on the number of corrupted parties.
1. We prove adaptive security when t_c = t/2 in the random oracle model (ROM) based on the algebraic one-more discrete logarithm assumption (AOMDL)—the same conditions under which FROST is proven statically secure.
2. We introduce the low-dimensional vector representation (LDVR) problem, parameterized by t_c, t, and n, and prove adaptive security in the algebraic group model (AGM) and ROM based on the AOMDL assumption and the hardness of the LDVR problem for the corresponding parameters. In some regimes (including some t_c >t/2) we show the LDVR problem is unconditionally hard, while in other regimes (in particular, when t_c = t) we show that hardness of the LDVR problem is necessary for adaptive security to hold. In fact, we show that hardness of the LDVR problem is necessary for proving adaptive security of a broad class of threshold Schnorr signatures.
2023
CRYPTO
Snowblind: A Threshold Blind Signature in Pairing-Free Groups
Abstract
Both threshold and blind signatures have, individually, received a considerable amount of attention. However little is known about their combination, i.e., a threshold signature which is also blind, in that no coalition of signers learns anything about the message being signed or the signature being produced. Several applications of blind signatures (e.g., anonymous tokens) would benefit from distributed signing as a means to increase trust in the service and hence reduce the risks of key compromise. This paper builds the first blind threshold signatures in pairing-free groups. Our main contribution is a construction that transforms an underlying blind non-threshold signature scheme with a suitable structure into a threshold scheme, preserving its blindness. The resulting signing protocol proceeds in three rounds, and produces signatures consisting of one group element and two scalars. The underlying non-threshold blind signature schemes are of independent interest, and improve upon the current state of the art (Tessaro and Zhu, EUROCRYPT ’22) with shorter signatures (three elements, instead of four) and simpler proofs of security. All of our schemes are proved secure in the Random Oracle and Algebraic Group Models, assuming the hardness of the discrete logarithm problem.
2023
CRYPTO
Fully Adaptive Schnorr Threshold Signatures
★
Abstract
We prove adaptive security of a simple three-round threshold
Schnorr signature scheme, which we call Sparkle. The standard notion of
security for threshold signatures considers a static adversary - one who
must declare which parties are corrupt at the beginning of the protocol.
The stronger adaptive adversary can at any time corrupt parties and
learn their state. This notion is natural and practical, yet not proven to
be met by most schemes in the literature.
In this paper, we demonstrate that Sparkle achieves several levels of
security based on different corruption models and assumptions. To begin
with, Sparkle is statically secure under minimal assumptions: the discrete
logarithm assumption (DL) and the random oracle model (ROM). If an
adaptive adversary corrupts fewer than t/2 out of a threshold of t+1
signers, then Sparkle is adaptively secure under a weaker variant of the
one-more discrete logarithm assumption (AOMDL) in the ROM. Finally,
we prove that Sparkle achieves full adaptive security, with a corruption
threshold of t, under AOMDL in the algebraic group model (AGM) with
random oracles. Importantly, we show adaptive security without requiring
secure erasures. Ours is the first proof achieving full adaptive security
without exponential tightness loss for any threshold Schnorr signature
scheme; moreover, the reduction is tight.
2023
ASIACRYPT
Threshold Structure-Preserving Signatures
Abstract
Structure-preserving signatures (SPS) are an important building block for privacy-preserving cryptographic primitives, such as electronic cash, anonymous credentials, and delegatable anonymous credentials. In this work, we introduce the first threshold structure-preserving signature scheme (TSPS). This enables multiple parties to jointly sign a message, resulting in a standard, single-party SPS signature, and can thus be used as a replacement for applications based on SPS.
We begin by defining and constructing SPS for indexed messages, which are messages defined relative to a unique index. We prove its security in the random oracle model under a variant of the generalized Pointcheval-Sanders assumption (PS). Moreover, we generalize this scheme to an indexed multi-message SPS for signing vectors of indexed messages, which we prove secure under the same assumption. We then formally define the notion of a TSPS and propose a construction based on our indexed multi-message SPS. Our TSPS construction is fully non-interactive, meaning that signers simply output partial signatures without communicating with the other signers. Additionally, signatures are short: they consist of 2 group elements and require 2 pairing product equations to verify. We prove the security of our TSPS under the security of our indexed multi-message SPS scheme. Finally, we show that our TSPS may be used as a drop-in replacement for UC-secure Threshold-Issuance Anonymous Credential (TIAC) schemes, such as Coconut, without the overhead of the Fischlin transform.
2023
RWC
From Theory to Practice to Theory: Lessons Learned from Multi-Party Schnorr Signatures
Abstract
At RWC in 2019, Gregory Neven presented seminal work on a range of two-round multisignature schemes, all of which proved to be insecure against ROS attacks. At that time, it appeared doubtful if concurrently secure two-round multi-party Schnorr signatures could exist. In 2020, this research question was answered in the affirmative, and we saw the emergence of several two-round multi-party Schnorr signature scheme secure under concurrent sessions, namely FROST on the threshold side, MuSig2 (presented at RWC 2021) and DWMS on the multisignature side.
Three years have passed since these schemes were first published, and we have learned a lot in their transition from theory to practical use. In this talk, we will review these lessons learned, and how the field has since progressed. We will then introduce a range of open research questions that, if solved, would dramatically improve the practicality and applicability of these schemes in real-world systems.
2022
CRYPTO
Better than Advertised Security for Non-Interactive Threshold Signatures
📺
Abstract
We give a unified syntax, and a hierarchy of definitions of security of increasing strength, for non-interactive threshold signature schemes. These are schemes having a single-round signing protocol, possibly with one prior round of message-independent pre-processing. We fit FROST1 and BLS, which are leading practical schemes, into our hierarchy, in particular showing they meet stronger security definitions than they have been shown to meet so far. We also fit in our hierarchy a more efficient version FROST2 of FROST1 that we give. These definitions and results, for simplicity, all assume trusted key generation. Finally, we prove the security of FROST2 with key generation performed by an efficient distributed key generation protocol.
Service
- Eurocrypt 2025 Program committee
- Crypto 2024 Program committee
- Eurocrypt 2024 Program committee
- Asiacrypt 2024 Program committee
Coauthors
- Mihir Bellare (1)
- Elizabeth Crites (7)
- Jonathan Katz (1)
- Markulf Kohlweiss (1)
- Chelsea Komlo (5)
- Mary Maller (3)
- Bart Preneel (1)
- Tim Ruffing (1)
- Mahdi Sedaghat (1)
- Daniel Slamanig (1)
- Alistair Stewart (1)
- Stefano Tessaro (3)
- Chenzhi Zhu (3)