## CryptoDB

### Mary Maller

#### Publications

**Year**

**Venue**

**Title**

2023

PKC

Zero-Knowledge Arguments for Subverted RSA Groups
Abstract

This work investigates zero-knowledge protocols in subverted RSA groups where the prover can choose the modulus and where the verifier does not know the group order. We introduce a novel technique for extracting the witness from a general homomorphism over a group of unknown order that does not require parallel repetitions. We then present a NIZK range proof for general homomorphisms as Paillier encryptions in the designated verifier model that works under a subverted setup. The key ingredient of our proof is a constant sized NIZK proof of knowledge for a plaintext. Security is proven in the ROM assuming an IND-CPA additively homomorphic encryption scheme. The verifier's public key can be maliciously generated and is reusable and linear in the number of proofs to be verified.

2023

CRYPTO

Snowblind: A Threshold Blind Signature in Pairing-Free Groups
Abstract

Both threshold and blind signatures have, individually, received a considerable amount of attention. However little is known about their combination, i.e., a threshold signature which is also blind, in that no coalition of signers learns anything about the message being signed or the signature being produced. Several applications of blind signatures (e.g., anonymous tokens) would benefit from distributed signing as a means to increase trust in the service and hence reduce the risks of key compromise. This paper builds the first blind threshold signatures in pairing-free groups. Our main contribution is a construction that transforms an underlying blind non-threshold signature scheme with a suitable structure into a threshold scheme, preserving its blindness. The resulting signing protocol proceeds in three rounds, and produces signatures consisting of one group element and two scalars. The underlying non-threshold blind signature schemes are of independent interest, and improve upon the current state of the art (Tessaro and Zhu, EUROCRYPT ’22) with shorter signatures (three elements, instead of four) and simpler proofs of security. All of our schemes are proved secure in the Random Oracle and Algebraic Group Models, assuming the hardness of the discrete logarithm problem.

2023

CRYPTO

Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation
Abstract

We present Bingo, an adaptively secure and optimally resilient packed asynchronous verifiable secret sharing (PAVSS) protocol that allows a dealer to share f+1 secrets with a total communication complexity of O(λn^2) words, where λ is the security parameter and n is the number of parties. Using Bingo, we obtain an adaptively secure validated asynchronous Byzantine agreement (VABA) protocol that uses O(λn^3) expected words and constant expected time, which we in turn use to construct an adaptively secure high-threshold asynchronous distributed key generation (ADKG) protocol that uses O(λn^3) expected words and constant expected time. To the best of our knowledge, our ADKG is the first to allow for an adaptive adversary while matching the asymptotic complexity of the best known static ADKGs.

2023

CRYPTO

Fully Adaptive Schnorr Threshold Signatures
Abstract

We prove adaptive security of a simple three-round threshold
Schnorr signature scheme, which we call Sparkle. The standard notion of
security for threshold signatures considers a static adversary - one who
must declare which parties are corrupt at the beginning of the protocol.
The stronger adaptive adversary can at any time corrupt parties and
learn their state. This notion is natural and practical, yet not proven to
be met by most schemes in the literature.
In this paper, we demonstrate that Sparkle achieves several levels of
security based on different corruption models and assumptions. To begin
with, Sparkle is statically secure under minimal assumptions: the discrete
logarithm assumption (DL) and the random oracle model (ROM). If an
adaptive adversary corrupts fewer than t/2 out of a threshold of t+1
signers, then Sparkle is adaptively secure under a weaker variant of the
one-more discrete logarithm assumption (AOMDL) in the ROM. Finally,
we prove that Sparkle achieves full adaptive security, with a corruption
threshold of t, under AOMDL in the algebraic group model (AGM) with
random oracles. Importantly, we show adaptive security without requiring
secure erasures. Ours is the first proof achieving full adaptive security
without exponential tightness loss for any threshold Schnorr signature
scheme; moreover, the reduction is tight.

2022

CRYPTO

Better than Advertised Security for Non-Interactive Threshold Signatures
📺
Abstract

We give a unified syntax, and a hierarchy of definitions of security of increasing strength, for non-interactive threshold signature schemes. These are schemes having a single-round signing protocol, possibly with one prior round of message-independent pre-processing. We fit FROST1 and BLS, which are leading practical schemes, into our hierarchy, in particular showing they meet stronger security definitions than they have been shown to meet so far. We also fit in our hierarchy a more efficient version FROST2 of FROST1 that we give. These definitions and results, for simplicity, all assume trusted key generation. Finally, we prove the security of FROST2 with key generation performed by an efficient distributed key generation protocol.

2021

EUROCRYPT

Aggregatable Distributed Key Generation
📺
Abstract

In this paper we introduce a distributed key generation (DKG) protocol with aggregatable and publicly verifiable transcripts. As compared with prior approaches, our DKG reduces the size of the final transcript and the time to verify it from O(n^2) to O(n), where n denotes the number of parties. We also revisit existing DKG security definitions, which are quite strong, and propose new and natural relaxations. As a result, we can prove the security of our aggregatable DKG as well as that of several existing DKGs, including the popular Pedersen variant. We show that, under these new definitions, these existing DKGs can be used to yield secure threshold variants of popular cryptosystems such as El-Gamal encryption and BLS signatures. We also prove that our DKG can be securely combined with a new efficient verifiable unpredictable function (VUF), whose security we prove in the random oracle model. Finally, we experimentally evaluate our DKG and show that the per-party overheads scale linearly and are practical: for 64 parties it takes 71ms to share and 359ms to verify the overall transcript, while these respective costs for 8192 parties are 8s and 42.2s.

2021

ASIACRYPT

Snarky Ceremonies
📺
Abstract

Succinct non-interactive arguments of knowledge (SNARKs) have found numerous applications in the blockchain setting and elsewhere. The most efficient SNARKs require a distributed ceremony protocol to generate public parameters, also known as a structured reference string (SRS). Our contributions are two-fold:
\begin{compactitem}
\item We give a security framework for non-interactive zero-knowledge arguments with a ceremony protocol.
\item We revisit the ceremony protocol of Groth's SNARK [Bowe et al., 2017]. We show that the original construction can be simplified and optimized, and then prove its security in our new framework. Importantly, our construction avoids the random beacon model used in the original work.
\end{compactitem}

2021

ASIACRYPT

Proofs for Inner Pairing Products and Applications
📺
Abstract

We present a generalized inner product argument and demonstrate its applications to pairing-based languages. We apply our generalized argument to prove that an inner pairing product is correctly evaluated with respect to committed vectors of $n$ source group elements. With a structured reference string (SRS), we achieve a logarithmic-time verifier whose work is dominated by $6 \log n$ target group exponentiations. Proofs are of size $6 \log n$ target group elements, computed using $6n$ pairings and $4n$ exponentiations in each source group.
We apply our inner product arguments to build the first polynomial commitment scheme with succinct (logarithmic) verification, $O(\sqrt{d})$ prover complexity for degree $d$ polynomials (not including the cost to evaluate the polynomial), and a SRS of size $O(\sqrt{d})$. Concretely, this means that for $d=2^{28}$, producing an evaluation proof in our protocol is $76\times$ faster than doing so in the KZG commitment scheme, and the CRS in our protocol is $1000\times$ smaller: $13$MB vs $13$GB for KZG.
As a second application, we introduce an argument for aggregating $n$ Groth16 zkSNARKs into an $O(\log n)$ sized proof. Our protocol is significantly faster ($>1000\times$) than aggregating SNARKs via recursive composition: we aggregate $\sim 130,000$ proofs in $25$ minutes, versus $90$ proofs via recursive composition. Finally, we further apply our aggregation protocol to construct a low-memory SNARK for machine computations that does not rely on recursive composition. For a computation that requires time $T$ and space $S$, our SNARK produces proofs in space $\tilde{\mathcal{O}}(S+T)$, which is significantly more space efficient than a monolithic SNARK, which requires space $\tilde{\mathcal{O}}(S \cdot T)$.

2020

EUROCRYPT

Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS
📺
Abstract

We present a general methodology to construct preprocessing zkSNARKs where the structured reference string (SRS) is universal and updatable. This exploits a novel application of *holographic* IOPs, a natural generalization of holographic PCPs [Babai et al., STOC 1991].
We use our methodology to obtain a preprocessing zkSNARK where the SRS has linear size and arguments have constant size. Our construction improves on Sonic [Maller et al., CCS 2019], the prior state of the art in this setting, in all efficiency parameters: proving is an order of magnitude faster and verification is twice as fast, even with smaller SRS size and argument size. Our construction is most efficient when instantiated in the algebraic group model (also used by Sonic), but we also demonstrate how to realize it under concrete knowledge assumptions.
The core of our zkSNARK is a new holographic IOP for rank-1 constraint satisfiability (R1CS), which is the first to achieve linear proof length and constant query complexity (among other efficiency features).

2018

CRYPTO

Updatable and Universal Common Reference Strings with Applications to zk-SNARKs
📺
Abstract

By design, existing (pre-processing) zk-SNARKs embed a secret trapdoor in a relation-dependent common reference strings (CRS). The trapdoor is exploited by a (hypothetical) simulator to prove the scheme is zero knowledge, and the secret-dependent structure facilitates a linear-size CRS and linear-time prover computation. If known by a real party, however, the trapdoor can be used to subvert the security of the system. The structured CRS that makes zk-SNARKs practical also makes deploying zk-SNARKS problematic, as it is difficult to argue why the trapdoor would not be available to the entity responsible for generating the CRS. Moreover, for pre-processing zk-SNARKs a new trusted CRS needs to be computed every time the relation is changed.In this paper, we address both issues by proposing a model where a number of users can update a universal CRS. The updatable CRS model guarantees security if at least one of the users updating the CRS is honest. We provide both a negative result, by showing that zk-SNARKs with private secret-dependent polynomials in the CRS cannot be updatable, and a positive result by constructing a zk-SNARK based on a CRS consisting only of secret-dependent monomials. The CRS is of quadratic size, is updatable, and is universal in the sense that it can be specialized into one or more relation-dependent CRS of linear size with linear-time prover computation.

2018

ASIACRYPT

Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution
Abstract

There have been tremendous advances in reducing interaction, communication and verification time in zero-knowledge proofs but it remains an important challenge to make the prover efficient. We construct the first zero-knowledge proof of knowledge for the correct execution of a program on public and private inputs where the prover computation is nearly linear time. This saves a polylogarithmic factor in asymptotic performance compared to current state of the art proof systems.We use the TinyRAM model to capture general purpose processor computation. An instance consists of a TinyRAM program and public inputs. The witness consists of additional private inputs to the program. The prover can use our proof system to convince the verifier that the program terminates with the intended answer within given time and memory bounds. Our proof system has perfect completeness, statistical special honest verifier zero-knowledge, and computational knowledge soundness assuming linear-time computable collision-resistant hash functions exist. The main advantage of our new proof system is asymptotically efficient prover computation. The prover’s running time is only a superconstant factor larger than the program’s running time in an apples-to-apples comparison where the prover uses the same TinyRAM model. Our proof system is also efficient on the other performance parameters; the verifier’s running time and the communication are sublinear in the execution time of the program and we only use a log-logarithmic number of rounds.

2016

ASIACRYPT

#### Program Committees

- Crypto 2023
- PKC 2021
- Asiacrypt 2021

#### Coauthors

- Ittai Abraham (1)
- Mihir Bellare (1)
- Jonathan Bootle (1)
- Benedikt Bünz (1)
- Andrea Cerulli (1)
- Melissa Chase (1)
- Alessandro Chiesa (1)
- Elizabeth Crites (3)
- Jens Groth (3)
- Kobi Gurkan (1)
- Yuncong Hu (1)
- Sune Jakobsen (1)
- Philipp Jovanovic (2)
- Markulf Kohlweiss (2)
- Dimitris Kolonelos (1)
- Chelsea Komlo (3)
- Sarah Meiklejohn (4)
- Ian Miers (1)
- Pratyush Mishra (2)
- Janno Siim (1)
- Gilad Stern (2)
- Stefano Tessaro (2)
- Alin Tomescu (1)
- Nirvan Tyagi (1)
- Psi Vesely (2)
- Mikhail Volkhov (2)
- Nicholas P. Ward (1)
- Chenzhi Zhu (2)