International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Giuseppe Persiano

Publications

Year
Venue
Title
2021
ASIACRYPT
Efficient Boolean Search over Encrypted Data with Reduced Leakage
Encrypted multi-maps enable outsourcing the storage of a multi-map to an untrusted server while maintaining the ability to query privately. We focus on encrypted Boolean multi-maps that support arbitrary Boolean queries over the multi-map. Kamara and Moataz [Eurocrypt’17] presented the first encrypted multi-map, BIEX, that supports CNF queries with optimal communication, worst-case sublinear search time and non-trivial leakage. We improve on previous work by presenting a new construction CNFFilter for CNF queries with significantly less leakage than BIEX, while maintaining both optimal communication and worst-case sublinear search time. As a direct consequence our construction shows additional resistance to leakage-abuse attacks in comparison to prior works. For most CNF queries, CNFFilter avoids leaking the result sets for any singleton queries for labels appearing in the CNF query. As an example, for the CNF query of the form (l1 ∨ l2) ∧ l3, our scheme does not leak the result sizes of queries to l1, l2 or l3 individually. On the other hand, BIEX does leak some of this information. This is just an example of the reduced leakage obtained by CNFFilter. The core of CNFFilter is a new filtering algorithm that performs set intersections with significantly less leakage compared to prior works. We implement CNFFilter and show that CNFFilter achieves faster search times and similar communication overhead compared to BIEX at the cost of a small increase in server storage.
2020
CRYPTO
Lower Bounds for Encrypted Multi-Maps and Searchable Encryption in the Leakage Cell Probe Model 📺
Sarvar Patel Giuseppe Persiano Kevin Yeo
Encrypted multi-maps (EMMs) enable clients to outsource the storage of a multi-map to a potentially untrusted server while maintaining the ability to perform operations in a privacy-preserving manner. EMMs are an important primitive as they are an integral building block for many practical applications such as searchable encryption and encrypted databases. In this work, we formally examine the tradeoffs between privacy and efficiency for EMMs. Currently, all known dynamic EMMs with constant overhead reveal if two operations are performed on the same key or not that we denote as the global key-equality pattern. In our main result, we present strong evidence that the leakage of the global key-equality pattern is inherent for any dynamic EMM construction with $O(1)$ efficiency. In particular, we consider the slightly smaller leakage of decoupled key-equality pattern where leakage of key-equality between update and query operations is decoupled and the adversary only learns whether two operations of the same type are performed on the same key or not. We show that any EMM with at most decoupled key-equality pattern leakage incurs $\Omega(\log n)$ overhead in the leakage cell probe model. This is tight as there exist ORAM-based constructions of EMMs with logarithmic slowdown that leak no more than the decoupled key-equality pattern (and actually, much less). Furthermore, we present stronger lower bounds that encrypted multi-maps leaking at most the decoupled key-equality pattern but are able to perform one of either the update or query operations in the plaintext still require $\Omega(\log n)$ overhead. Finally, we extend our lower bounds to show that dynamic, response-hiding searchable encryption schemes must also incur $\Omega(log n)$ overhead even when one of either the document updates or searches may be performed in the plaintext.
2019
EUROCRYPT
Lower Bounds for Differentially Private RAMs 📺
Giuseppe Persiano Kevin Yeo
In this work, we study privacy-preserving storage primitives that are suitable for use in data analysis on outsourced databases within the differential privacy framework. The goal in differentially private data analysis is to disclose global properties of a group without compromising any individual’s privacy. Typically, differentially private adversaries only ever learn global properties. For the case of outsourced databases, the adversary also views the patterns of access to data. Oblivious RAM (ORAM) can be used to hide access patterns but ORAM might be excessive as in some settings it could be sufficient to be compatible with differential privacy and only protect the privacy of individual accesses.We consider $$(\epsilon ,\delta )$$(ϵ,δ)-Differentially Private RAM, a weakening of ORAM that only protects individual operations and seems better suited for use in data analysis on outsourced databases. As differentially private RAM has weaker security than ORAM, there is hope that we can bypass the $$\varOmega (\log (nb/c))$$Ω(log(nb/c)) bandwidth lower bounds for ORAM by Larsen and Nielsen [CRYPTO ’18] for storing an array of nb-bit entries and a client with c bits of memory. We answer in the negative and present an $$\varOmega (\log (nb/c))$$Ω(log(nb/c)) bandwidth lower bound for privacy budgets of $$\epsilon = O(1)$$ϵ=O(1) and $$\delta \le 1/3$$δ≤1/3.The information transfer technique used for ORAM lower bounds does not seem adaptable for use with the weaker security guarantees of differential privacy. Instead, we prove our lower bounds by adapting the chronogram technique to our setting. To our knowledge, this is the first work that uses the chronogram technique for lower bounds on privacy-preserving storage primitives.
2018
CRYPTO
Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions 📺
At ICS 2010, Dziembowski, Pietrzak and Wichs introduced the notion of non-malleable codes, a weaker form of error-correcting codes guaranteeing that the decoding of a tampered codeword either corresponds to the original message or to an unrelated value. The last few years established non-malleable codes as one of the recently invented cryptographic primitives with the highest impact and potential, with very challenging open problems and applications.In this work, we focus on so-called continuously non-malleable codes in the split-state model, as proposed by Faust et al. (TCC 2014), where a codeword is made of two shares and an adaptive adversary makes a polynomial number of attempts in order to tamper the target codeword, where each attempt is allowed to modify the two shares independently (yet arbitrarily). Achieving continuous non-malleability in the split-state model has been so far very hard. Indeed, the only known constructions require strong setup assumptions (i.e., the existence of a common reference string) and strong complexity-theoretic assumptions (i.e., the existence of non-interactive zero-knowledge proofs and collision-resistant hash functions).As our main result, we construct a continuously non-malleable code in the split-state model without setup assumptions, requiring only one-to-one one-way functions (i.e., essentially optimal computational assumptions). Our result introduces several new ideas that make progress towards understanding continuous non-malleability, and shows interesting connections with protocol-design and proof-approach techniques used in other contexts (e.g., look-ahead simulation in zero-knowledge proofs, non-malleable commitments, and leakage resilience).
2016
EUROCRYPT
2016
TCC
2016
TCC
2015
EPRINT
2015
EPRINT
2015
CRYPTO
2013
CRYPTO
2010
EPRINT
Fully Secure Anonymous HIBE and Secret-Key Anonymous IBE with Short Ciphertexts
Angelo De Caro Vincenzo Iovino Giuseppe Persiano
Lewko and Waters [Eurocrypt 2010] presented a fully secure HIBE with short ciphertexts. In this paper we show how to modify their construction to achieve anonymity. We prove the security of our scheme under static (and generically secure) assumptions formulated in composite order bilinear groups. In addition, we present a fully secure Anonymous IBE in the secret-key setting. Secret-Key Anonymous IBE was implied by the work of [Shen-Shi-Waters - TCC 2009] which can be shown secure in the selective-id model. No previous fully secure construction of secret-key Anonymous IBE is known.
2009
TCC
2009
CRYPTO
2008
EPRINT
Constant-Round Concurrent Non-Malleable Commitments and Decommitments
Rafail Ostrovsky Giuseppe Persiano Ivan Visconti
In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent non-malleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion of non-malleability introduced by [Dolev, Dwork and Naor STOC 91] that is based on the independence of the committed and decommitted message, a new and stronger notion of non-malleability has been given in [Pass and Rosen STOC 05] by requiring that for any man-in-the-middle adversary there is a stand-alone adversary that succeeds with the same probability. Under this stronger security notion, a constant-round commitment scheme that is concurrent non-malleable only with respect to commitment has been given in [Pass and Rosen FOCS 05] for the plain model, thus leaving as an open problem the construction of a constant-round concurrent non-malleable commitments with respect to decommitment. In other words, in [Pass and Rosen FOCS 05] security against adversaries that mount concurrent man-in-the-middle attacks is guaranteed only during the commitment phase (under their stronger notion of non-malleability). The main result of this paper is a commitment scheme that is concurrent non-malleable with respect to both commitment and decommitment, under the stronger notion of [Pass and Rosen STOC 05]. This property protects against cMiM attacks mounted during both commitments and decommitments which is a crucial security requirement in several applications, as in some digital auctions, in which players have to perform both commitments and decommitments. Our scheme uses a constant number of rounds of interaction in the plain model and is the first scheme that enjoys all these properties under the definitions of [Pass and Rosen FOCS 05]. We stress that, exactly as in [Pass and Rosen FOCS 05], we assume that commitments and decommitments are performed in two distinct phases that do not overlap in time.
2005
CRYPTO
2004
ASIACRYPT
2004
CRYPTO
2004
EUROCRYPT
2003
EPRINT
Public Key Encryption with keyword Search
We study the problem of searching on data that is encrypted using a public key system. Consider user Bob who sends email to user Alice encrypted under Alice's public key. An email gateway wants to test whether the email contains the keyword `urgent' so that it could route the email accordingly. Alice, on the other hand does not wish to give the gateway the ability to decrypt all her messages. We define and construct a mechanism that enables Alice to provide a key to the gateway that enables the gateway to test whether the word `urgent' is a keyword in the email without learning anything else about the email. We refer to this mechanism as <I>Public Key Encryption with keyword Search</I>. As another example, consider a mail server that stores various messages publicly encrypted for Alice by others. Using our mechanism Alice can send the mail server a key that will enable the server to identify all messages containing some specific keyword, but learn nothing else. We define the concept of public key encryption with keyword search and give several constructions.
2001
CRYPTO
1998
EPRINT
The Graph Clustering Problem has a Perfect Zero-Knowledge Proof
The input to the Graph Clustering Problem consists of a sequence of integers $m_1,...,m_t$ and a sequence of $\sum_{i=1}^{t}m_i$ graphs. The question is whether the equivalence classes, under the graph isomorphism relation, of the input graphs have sizes which match the input sequence of integers. In this note we show that this problem has a (perfect) zero-knowledge interactive proof system. This result improves over <a href="http:../1996/96-14.html">record 96-14</a>, where a parametrized (by the sequence of integers) version of the problem was studied.
1996
JOFC
1994
ASIACRYPT
1993
CRYPTO
1990
EUROCRYPT
1988
CRYPTO
1987
CRYPTO

Program Committees

Crypto 2019
Asiacrypt 2018
PKC 2016 (Program chair)
Crypto 2015
Eurocrypt 2013
Crypto 2010
Eurocrypt 2007
PKC 2006