International Association for Cryptologic Research

International Association
for Cryptologic Research


Bernardo Magri


Broadcast-Optimal Two Round MPC with an Honest Majority 📺
This paper closes the question of the possibility of two-round MPC protocols achieving different security guarantees with and without the availability of broadcast in any given round. Cohen et al. (Eurocrypt 2020) study this question in the dishonest majority setting; we complete the picture by studying the honest majority setting. In the honest majority setting, given broadcast in both rounds, it is known that the strongest guarantee — guaranteed output delivery — is achievable (Gordon et al. Crypto 2015). We show that, given broadcast in the first round only, guaranteed output delivery is still achievable. Given broadcast in the second round only, we give a new construction that achieves identifiable abort, and we show that fairness — and thus guaranteed output delivery — are not achievable in this setting. Finally, if only peer-to-peer channels are available, we show that the weakest guarantee — selective abort — is the only one achievable for corruption thresholds t > 1 and for t = 1 and n = 3. On the other hand, it is already known that selective abort can be achieved in these cases. In the remaining cases, i.e., t = 1 and n > 3, it is known (from the work of Ishai et al. at Crypto 2010, and Ishai et al. at Crypto 2015) that guaranteed output delivery (and thus all weaker guarantees) are possible.
You Only Speak Once: Secure MPC with Stateless Ephemeral Roles 📺
The inherent difficulty of maintaining stateful environments over long periods of time gave rise to the paradigm of serverless computing, where mostly-stateless components are deployed on demand to handle computation tasks, and are teared down once their task is complete. Serverless architecture could offer the added benefit of improved resistance to targeted denial-of-service attacks, by hiding from the attacker the physical machines involved in the protocol until after they complete their work. Realizing such protection, however, requires that the protocol only uses stateless parties, where each party sends only one message and never needs to speaks again. Perhaps the most famous example of this style of protocols is the Nakamoto consensus protocol used in Bitcoin: A peer can win the right to produce the next block by running a local lottery (mining), all while staying covert. Once the right has been won, it is executed by sending a single message. After that, the physical entity never needs to send more messages. We refer to this as the You-Only-Speak-Once (YOSO) property, and initiate the formal study of it within a new model that we call the YOSO model. Our model is centered around the notion of roles, which are stateless parties that can only send a single message. Crucially, our modelling separates the protocol design, that only uses roles, from the role-assignment mechanism, that assigns roles to actual physical entities. This separation enables studying these two aspects separately, and our YOSO model in this work only deals with the protocol-design aspect. We describe several techniques for achieving YOSO MPC; both computational and information theoretic. Our protocols are synchronous and provide guaranteed output delivery (which is important for application domains such as blockchains), assuming honest majority of roles in every time step. We describe a practically efficient computationally-secure protocol, as well as a proof-of-concept information theoretically secure protocol.