International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Divya Ravi

Publications

Year
Venue
Title
2020
ASIACRYPT
On the Exact Round Complexity of Best-of-both-Worlds Multi-party Computation 📺
The two traditional streams of multiparty computation (MPC) protocols consist of-- (a) protocols achieving guaranteed output delivery (\god) or fairness (\fair) in the honest-majority setting and (b) protocols achieving unanimous or selective abort (\uab, \sab) in the dishonest-majority setting. The favorable presence of honest majority amongst the participants is necessary to achieve the stronger notions of \god~or \fair. While the constructions of each type are abound in the literature, one class of protocols does not seem to withstand the threat model of the other. For instance, the honest-majority protocols do not guarantee privacy of the inputs of the honest parties in the face of dishonest majority and likewise the dishonest-majority protocols cannot achieve $\god$ and $\fair$, tolerating even a single corruption, let alone dishonest minority. The promise of the unconventional yet much sought-after species of MPC, termed as `Best-of-Both-Worlds' (BoBW), is to offer the best possible security depending on the actual corruption scenario. This work nearly settles the exact round complexity of two classes of BoBW protocols differing on the security achieved in the honest-majority setting, namely $\god$ and $\fair$ respectively, under the assumption of no setup (plain model), public setup (CRS) and private setup (CRS + PKI or simply PKI). The former class necessarily requires the number of parties to be strictly more than the sum of the bounds of corruptions in the honest-majority and dishonest-majority setting, for a feasible solution to exist. Demoting the goal to the second-best attainable security in the honest-majority setting, the latter class needs no such restriction. Assuming a network with pair-wise private channels and a broadcast channel, we show that 5 and 3 rounds are necessary and sufficient for the class of BoBW MPC with $\fair$ under the assumption of `no setup' and `public and private setup' respectively. For the class of BoBW MPC with $\god$, we show necessity and sufficiency of 3 rounds for the public setup case and 2 rounds for the private setup case. In the no setup setting, we show the sufficiency of 5 rounds, while the known lower bound is 4. All our upper bounds are based on polynomial-time assumptions and assume black-box simulation. With distinct feasibility conditions, the classes differ in terms of the round requirement. The bounds are in some cases different and on a positive note at most one more, compared to the maximum of the needs of the honest-majority and dishonest-majority setting. Our results remain unaffected when security with abort and fairness are upgraded to their identifiable counterparts.
2019
ASIACRYPT
Beyond Honest Majority: The Round Complexity of Fair and Robust Multi-party Computation
Arpita Patra Divya Ravi
Two of the most sought-after properties of Multi-party Computation (MPC) protocols are fairness and guaranteed output delivery (GOD), the latter also referred to as robustness. Achieving both, however, brings in the necessary requirement of malicious-minority. In a generalised adversarial setting where the adversary is allowed to corrupt both actively and passively, the necessary bound for a n-party fair or robust protocol turns out to be $$t_a + t_p < n$$, where $$t_a,t_p$$ denote the threshold for active and passive corruption with the latter subsuming the former. Subsuming the malicious-minority as a boundary special case, this setting, denoted as dynamic corruption, opens up a range of possible corruption scenarios for the adversary. While dynamic corruption includes the entire range of thresholds for $$(t_a,t_p)$$ starting from $$(\lceil \frac{n}{2} \rceil - 1, \lfloor n/2 \rfloor )$$ to $$(0,n-1)$$, the boundary corruption restricts the adversary only to the boundary cases of $$(\lceil \frac{n}{2} \rceil - 1, \lfloor n/2 \rfloor )$$ and $$(0,n-1)$$. Notably, both corruption settings empower an adversary to control majority of the parties, yet ensuring the count on active corruption never goes beyond $$\lceil \frac{n}{2} \rceil - 1$$. We target the round complexity of fair and robust MPC tolerating dynamic and boundary adversaries. As it turns out, $$\lceil n/2 \rceil + 1$$ rounds are necessary and sufficient for fair as well as robust MPC tolerating dynamic corruption. The non-constant barrier raised by dynamic corruption can be sailed through for a boundary adversary. The round complexity of 3 and 4 is necessary and sufficient for fair and GOD protocols respectively, with the latter having an exception of allowing 3 round protocols in the presence of a single active corruption. While all our lower bounds assume pair-wise private and broadcast channels and are resilient to the presence of both public (CRS) and private (PKI) setup, our upper bounds are broadcast-only and assume only public setup. The traditional and popular setting of malicious-minority, being restricted compared to both dynamic and boundary setting, requires 3 and 2 rounds in the presence of public and private setup respectively for both fair as well as GOD protocols.
2018
CRYPTO
On the Exact Round Complexity of Secure Three-Party Computation 📺
Arpita Patra Divya Ravi
We settle the exact round complexity of three-party computation (3PC) in honest-majority setting, for a range of security notions such as selective abort, unanimous abort, fairness and guaranteed output delivery. Selective abort security, the weakest in the lot, allows the corrupt parties to selectively deprive some of the honest parties of the output. In the mildly stronger version of unanimous abort, either all or none of the honest parties receive the output. Fairness implies that the corrupted parties receive their output only if all honest parties receive output and lastly, the strongest notion of guaranteed output delivery implies that the corrupted parties cannot prevent honest parties from receiving their output. It is a folklore that the implication holds from the guaranteed output delivery to fairness to unanimous abort to selective abort. We focus on two network settings– pairwise-private channels without and with a broadcast channel.In the minimal setting of pairwise-private channels, 3PC with selective abort is known to be feasible in just two rounds, while guaranteed output delivery is infeasible to achieve irrespective of the number of rounds. Settling the quest for exact round complexity of 3PC in this setting, we show that three rounds are necessary and sufficient for unanimous abort and fairness. Extending our study to the setting with an additional broadcast channel, we show that while unanimous abort is achievable in just two rounds, three rounds are necessary and sufficient for fairness and guaranteed output delivery. Our lower bound results extend for any number of parties in honest majority setting and imply tightness of several known constructions.The fundamental concept of garbled circuits underlies all our upper bounds. Concretely, our constructions involve transmitting and evaluating only constant number of garbled circuits. Assumption-wise, our constructions rely on injective (one-to-one) one-way functions.

Coauthors

Arpita Patra (3)
Swati Singla (1)