International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Papers from Transaction on Symmetric Cryptology 2021

Year
Venue
Title
2021
TOSC
(Quantum) Collision Attacks on Reduced Simpira v2 📺
Simpira v2 is an AES-based permutation proposed by Gueron and Mouha at ASIACRYPT 2016. In this paper, we build an improved MILP model to count the differential and linear active Sboxes for Simpira v2, which achieves tighter bounds of the minimum number of active Sboxes for a few versions of Simpira v2. Then, based on the new model, we find some new truncated differentials for Simpira v2 and give a series (quantum) collision attacks on two versions of reduced Simpira v2.
2021
TOSC
1, 2, 3, Fork: Counter Mode Variants based on a Generalized Forkcipher 📺
A multi-forkcipher (MFC) is a generalization of the forkcipher (FC) primitive introduced by Andreeva et al. at ASIACRYPT’19. An MFC is a tweakable cipher that computes s output blocks for a single input block, with s arbitrary but fixed. We define the MFC security in the ind-prtmfp notion as indistinguishability from s tweaked permutations. Generalizing tweakable block ciphers (TBCs, s = 1), as well as forkciphers (s = 2), MFC lends itself well to building simple-to-analyze modes of operation that support any number of cipher output blocks.Our main contribution is the generic CTR encryption mode GCTR that makes parallel calls to an MFC to encrypt a message M. We analyze the set of all 36 “simple and natural” GCTR variants under the nivE security notion by Peyrin and Seurin rom CRYPTO’16. Our proof method makes use of an intermediate abstraction called tweakable CTR (TCTR) that captures the core security properties of GCTR common to all variants, making their analyses easier. Our results show that many of the schemes achieve from well beyond birthday bound (BBB) to full n-bit security under nonce respecting adversaries and some even BBB and close to full n-bit security in the face of realistic nonce misuse conditions.We finally present an efficiency comparison of GCTR using ForkSkinny (an MFC with s = 2) with the traditional CTR and the more recent CTRT modes, both are instantiated with the SKINNY TBC. Our estimations show that any GCTR variant with ForkSkinny can achieve an efficiency advantage of over 20% for moderately long messages, illustrating that the use of an efficient MFC with s ≥ 2 brings a clear speed-up.
2021
TOSC
Accelerating the Search of Differential and Linear Characteristics with the SAT Method 📺
The introduction of the automatic search boosts the cryptanalysis of symmetric-key primitives to some degree. However, the performance of the automatic search is not always satisfactory for the search of long trails or ciphers with large state sizes. Compared with the extensive attention on the enhancement for the search with the mixed integer linear programming (MILP) method, few works care for the acceleration of the automatic search with the Boolean satisfiability problem (SAT) or satisfiability modulo theories (SMT) method. This paper intends to fill this vacancy. Firstly, with the additional encoding variables of the sequential counter circuit for the original objective function in the standard SAT method, we put forward a new encoding method to convert the Matsui’s bounding conditions into Boolean formulas. This approach does not rely on new auxiliary variables and significantly reduces the consumption of clauses for integrating multiple bounding conditions into one SAT problem. Then, we evaluate the accelerating effect of the novel encoding method under different sets of bounding conditions. With the observations and experience in the tests, a strategy on how to create the sets of bounding conditions that probably achieve extraordinary advances is proposed. The new idea is applied to search for optimal differential and linear characteristics for multiple ciphers. For PRESENT, GIFT-64, RECTANGLE, LBlock, TWINE, and some versions in SIMON and SPECK families of block ciphers, we obtain the complete bounds (full rounds) on the number of active S-boxes, the differential probability, as well as the linear bias. The acceleration method is also employed to speed up the search of related-key differential trails for GIFT-64. Based on the newly identified 18-round distinguisher with probability 2−58, we launch a 26-round key-recovery attack with 260.96 chosen plaintexts. To our knowledge, this is the longest attack on GIFT-64. Lastly, we note that the attack result is far from threatening the security of GIFT-64 since the designers recommended users to double the number of rounds under the related-key attack setting.
2021
TOSC
Algebraic Collision Attacks on Keccak 📺
In this paper, we analyze the collision resistance of the two smallest versions of Keccak which have a width of 200 and 400 bits respectively. We show that algebraic and linearization techniques can serve collision cryptanalysis by using some interesting properties of the linear part of the round function of Keccak. We present an attack on the Keccak versions that could be used in lightweight cryptography reduced to two rounds. For Keccak[40, 160] (resp. Keccak[72, 128] and Keccak[144, 256]) our attack has a computational complexity of 273 (resp. 252.5 and 2101.5) Keccak calls.
2021
TOSC
Algorithm Substitution Attacks: State Reset Detection and Asymmetric Modifications 📺
In this paper, we study algorithm substitution attacks (ASAs), where an algorithm in a cryptographic scheme is substituted for a subverted version. First, we formalize and study the use of state resets to detect ASAs, and show that many published stateful ASAs are detectable with simple practical methods relying on state resets. Second, we introduce two asymmetric ASAs on symmetric encryption, which are undetectable or unexploitable even by an adversary who knows the embedded subversion key. We also generalize this result, allowing for any symmetric ASA (on any cryptographic scheme) satisfying certain properties to be transformed into an asymmetric ASA. Our work demonstrates the broad application of the techniques first introduced by Bellare, Paterson, and Rogaway (Crypto 2014) and Bellare, Jaeger, and Kane (CCS 2015) and reinforces the need for precise definitions surrounding detectability of stateful ASAs.
2021
TOSC
Atom: A Stream Cipher with Double Key Filter 📺
It has been common knowledge that for a stream cipher to be secure against generic TMD tradeoff attacks, the size of its internal state in bits needs to be at least twice the size of the length of its secret key. In FSE 2015, Armknecht and Mikhalev however proposed the stream cipher Sprout with a Grain-like architecture, whose internal state was equal in size with its secret key and yet resistant against TMD attacks. Although Sprout had other weaknesses, it germinated a sequence of stream cipher designs like Lizard and Plantlet with short internal states. Both these designs have had cryptanalytic results reported against them. In this paper, we propose the stream cipher Atom that has an internal state of 159 bits and offers a security of 128 bits. Atom uses two key filters simultaneously to thwart certain cryptanalytic attacks that have been recently reported against keystream generators. In addition, we found that our design is one of the smallest stream ciphers that offers this security level, and we prove in this paper that Atom resists all the attacks that have been proposed against stream ciphers so far in literature. On the face of it, Atom also builds on the basic structure of the Grain family of stream ciphers. However, we try to prove that by including the additional key filter in the architecture of Atom we can make it immune to all cryptanalytic advances proposed against stream ciphers in recent cryptographic literature.
2021
TOSC
Automated Search Oriented to Key Recovery on Ciphers with Linear Key Schedule: Applications to Boomerangs in SKINNY and ForkSkinny 📺
Automatic modelling to search distinguishers with high probability covering as many rounds as possible, such as MILP, SAT/SMT, CP models, has become a very popular cryptanalysis topic today. In those models, the optimizing objective is usually the probability or the number of rounds of the distinguishers. If we want to recover the secret key for a round-reduced block cipher, there are usually two phases, i.e., finding an efficient distinguisher and performing key-recovery attack by extending several rounds before and after the distinguisher. The total number of attacked rounds is not only related to the chosen distinguisher, but also to the extended rounds before and after the distinguisher. In this paper, we try to combine the two phases in a uniform automatic model.Concretely, we apply this idea to automate the related-key rectangle attacks on SKINNY and ForkSkinny. We propose some new distinguishers with advantage to perform key-recovery attacks. Our key-recovery attacks on a few versions of round-reduced SKINNY and ForkSkinny cover 1 to 2 more rounds than the best previous attacks.
2021
TOSC
Automatic Search of Cubes for Attacking Stream Ciphers 📺
Cube attack was proposed by Dinur and Shamir, and it has become an important tool for analyzing stream ciphers. As the problem that how to recover the superpolys accurately was resolved by Hao et al. in EUROCRYPT 2020, another important problem is how to find “good” superpolys, which is equivalent to finding “good” cubes. However, there are two difficulties in finding “good” cubes. Firstly, the number of candidate cubes is enormous and most of the cubes are not “good”. Secondly, it is costly to evaluate whether a cube is “good”.In this paper, we present a new algorithm to search for a kind of “good” cubes, called valuable cubes. A cube is called valuable, if its superpoly has (at least) a balanced secret variable. A valuable cube is “good”, because its superpoly brings in 1 bit of information about the key. More importantly, the superpolys of valuable cubes could be used in both theoretical and practical analyses. To search for valuable cubes, instead of testing a set of cubes one by one, the new algorithm deals with the set of cubes together, such that the common computations can be done only once for all candidate cubes and duplicated computations are avoided. Besides, the new algorithm uses a heuristic method to reject useless cubes efficiently. This heuristic method is based on the divide-and-conquer strategy as well as an observation.For verifications of this new algorithm, we applied it to Trivium and Kreyvium, and obtained three improvements. Firstly, we found two valuable cubes for 843-round Trivium, such that we proposed, as far as we know, the first theoretical key-recovery attack against 843-round Trivium, while the previous highest round of Trivium that can be attacked was 842, given by Hao et al. in EUROCRYPT 2020. Secondly, by finding many small valuable cubes, we presented practical attacks against 806- and 808-round Trivium for the first time, while the previous highest round of Trivium that can be attacked practically was 805. Thirdly, based on the cube used to attack 892-round Kreyvium in EUROCRYPT 2020, we found more valuable cubes and mounted the key-recovery attacks against Kreyvium to 893-round.
2021
TOSC
Boomeyong: Embedding Yoyo within Boomerang and its Applications to Key Recovery Attacks on AES and Pholkos 📺
This work investigates a generic way of combining two very effective and well-studied cryptanalytic tools, proposed almost 18 years apart, namely the boomerang attack introduced by Wagner in FSE 1999 and the yoyo attack by Ronjom et al. in Asiacrypt 2017. In doing so, the s-box switch and ladder switch techniques are leveraged to embed a yoyo trail inside a boomerang trail. As an immediate application, a 6-round key recovery attack on AES-128 is mounted with time complexity of 278. A 10-round key recovery attack on recently introduced AES-based tweakable block cipher Pholkos is also furnished to demonstrate the applicability of the new technique on AES-like constructions. The results on AES are experimentally verified by applying and implementing them on a small scale variant of AES. We provide arguments that draw a relation between the proposed strategy with the retracing boomerang attack devised in Eurocrypt 2020. To the best of our knowledge, this is the first attempt to merge the yoyo and boomerang techniques to analyze SPN ciphers and warrants further attention as it has the potential of becoming an important cryptanalysis tool.
2021
TOSC
Comparing Large-unit and Bitwise Linear Approximations of SNOW 2.0 and SNOW 3G and Related Attacks 📺
In this paper, we study and compare the byte-wise and bitwise linear approximations of SNOW 2.0 and SNOW 3G, and present a fast correlation attack on SNOW 3G by using our newly found bitwise linear approximations. On one side, we reconsider the relation between the large-unit linear approximation and the smallerunit/ bitwise ones derived from the large-unit one, showing that approximations on large-unit alphabets have advantages over all the smaller-unit/bitwise ones in linear attacks. But then on the other side, by comparing the byte-wise and bitwise linear approximations of SNOW 2.0 and SNOW 3G respectively, we have found many concrete examples of 8-bit linear approximations whose certain 1-dimensional/bitwise linear approximations have almost the same SEI (Squared Euclidean Imbalance) as that of the original 8-bit ones. That is, each of these byte-wise linear approximations is dominated by a single bitwise approximation, and thus the whole SEI is not essentially larger than the SEI of the dominating single bitwise approximation. Since correlation attacks can be more efficiently implemented using bitwise approximations rather than large-unit approximations, improvements over the large-unit linear approximation attacks are possible for SNOW 2.0 and SNOW 3G. For SNOW 3G, we make a careful search of the bitwise masks for the linear approximations of the FSM and obtain many mask tuples which yield high correlations. By using these bitwise linear approximations, we mount a fast correlation attack to recover the initial state of the LFSR with the time/memory/data/pre-computation complexities all upper bounded by 2174.16, improving slightly the previous best one which used an 8-bit (vectorized) linear approximation in a correlation attack with all the complexities upper bounded by 2176.56. Though not a significant improvement, our research results illustrate that we have an opportunity to achieve improvement over the large-unit attacks by using bitwise linear approximations in a linear approximation attack, and provide a newinsight on the relation between large-unit and bitwise linear approximations.
2021
TOSC
Cryptanalysis of the SoDark Cipher for HF Radio Automatic Link Establishment 📺
The SoDark cipher is used to protect transmitted frames in the second and third generation automatic link establishment (ALE) standards for high frequency (HF) radios. The cipher is primarily meant to prevent unauthorized linking and attacks on the availability of HF radio networks. This paper represents the first known security analysis of the cipher used by the second generation ALE protocol—the de facto world standard—and presents a related-tweak attack on the full eight round version of the algorithm. Under certain conditions, collisions of intermediate states several rounds into the cipher can be detected from the ciphertext with high probability. This enables testing against the intermediate states using only parts of the key. The best attack is a chosen-ciphertext attack which can recover the secret key in about an hour with 100% probability, using 29 chosen ciphertexts.
2021
TOSC
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation 📺
In this work, we propose a construction of 2-round tweakable substitutionpermutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When instantiated with an n-bit block cipher with ωn-bit keys, the resulting tweakable block cipher, dubbed CTET+, can be viewed as a tweakable enciphering scheme that encrypts ωκ-bit messages for any integer ω ≥ 2 using 5n + κ-bit keys and n-bit tweaks, providing 2n/3-bit security.Compared to the 2-round non-linear SPN analyzed in [CDK+18], we both minimize it by requiring a single permutation, and weaken the requirements on the middle linear layer, allowing better performance. As a result, CTET+ becomes the first tweakable enciphering scheme that provides beyond-birthday-bound security using a single permutation, while its efficiency is still comparable to existing schemes including AES-XTS, EME, XCB and TET. Furthermore, we propose a new tweakable enciphering scheme, dubbed AES6-CTET+, which is an actual instantiation of CTET+ using a reduced round AES block cipher as the underlying secret S-box. Extensivecryptanalysis of this algorithm allows us to claim 127 bits of security.Such tweakable enciphering schemes with huge block sizes become desirable in the context of disk encryption, since processing a whole sector as a single block significantly worsens the granularity for attackers when compared to, for example, AES-XTS, which treats every 16-byte block on the disk independently. Besides, as a huge amount of data is being stored and encrypted at rest under many different keys in clouds, beyond-birthday-bound security will most likely become necessary in the short term.
2021
TOSC
Diving Deep into the Weak Keys of Round Reduced Ascon 📺
At ToSC 2021, Rohit et al. presented the first distinguishing and key recovery attacks on 7 rounds Ascon without violating the designer’s security claims of nonce-respecting setting and data limit of 264 blocks per key. So far, these are the best attacks on 7 rounds Ascon. However, the distinguishers require (impractical) 260 data while the data complexity of key recovery attacks exactly equals 264. Whether there are any practical distinguishers and key recovery attacks (with data less than 264) on 7 rounds Ascon is still an open problem.In this work, we give positive answers to these questions by providing a comprehensive security analysis of Ascon in the weak key setting. Our first major result is the 7-round cube distinguishers with complexities 246 and 233 which work for 282 and 263 keys, respectively. Notably, we show that such weak keys exist for any choice (out of 64) of 46 and 33 specifically chosen nonce variables. In addition, we improve the data complexities of existing distinguishers for 5, 6 and 7 rounds by a factor of 28, 216 and 227, respectively. Our second contribution is a new theoretical framework for weak keys of Ascon which is solely based on the algebraic degree. Based on our construction, we identify 2127.99, 2127.97 and 2116.34 weak keys (out of 2128) for 5, 6 and 7 rounds, respectively. Next, we present two key recovery attacks on 7 rounds with different attack complexities. The best attack can recover the secret key with 263 data, 269 bits of memory and 2115.2 time. Our attacks are far from threatening the security of full 12 rounds Ascon, but we expect that they provide new insights into Ascon’s security.
2021
TOSC
Exploiting Weak Diffusion of Gimli: Improved Distinguishers and Preimage Attacks 📺
The Gimli permutation proposed in CHES 2017 was designed for cross-platform performance. One main strategy to achieve such a goal is to utilize a sparse linear layer (Small-Swap and Big-Swap), which occurs every two rounds. In addition, the round constant addition occurs every four rounds and only one 32-bit word is affected by it. The above two facts have been recently exploited to construct a distinguisher for the full Gimli permutation with time complexity 264. By utilizing a new property of the SP-box, we demonstrate that the time complexity of the full-round distinguisher can be further reduced to 252 while a significant bias still remains. Moreover, for the 18-round Gimli permutation, we could construct a distinguisher even with only 2 queries. Apart from the permutation itself, the weak diffusion can also be utilized to accelerate the preimage attacks on reduced Gimli-Hash and Gimli-XOF-128 with a divide-and-conquer method. As a consequence, the preimage attacks on reduced Gimli-Hash and Gimli-XOF-128 can reach up to 5 rounds and 9 rounds, respectively. Since Gimli is included in the second round candidates in NIST’s Lightweight Cryptography Standardization process, we expect that our analysis can further advance the understanding of Gimli. To the best of our knowledge, the distinguishing attacks and preimage attacks are the best so far.
2021
TOSC
Exploring Differential-Based Distinguishers and Forgeries for ASCON 📺
Automated methods have become crucial components when searching for distinguishers against symmetric-key cryptographic primitives. While MILP and SAT solvers are among the most popular tools to model ciphers and perform cryptanalysis, other methods with different performance profiles are appearing. In this article, we explore the use of Constraint Programming (CP) for differential cryptanalysis on the Ascon authenticated encryption family (first choice of the CAESAR lightweight applications portfolio and current finalist of the NIST LWC competition) and its internal permutation. We first present a search methodology for finding differential characteristics for Ascon with CP, which can easily find the best differential characteristics already reported by the Ascon designers. This shows the capability of CP in generating easily good differential results compared to dedicated search heuristics. Based on our tool, we also parametrize the search strategies in CP to generate other differential characteristics with the goal of forming limited-birthday distinguishers for 4, 5, 6 and 7 rounds and rectangle attacks for 4 and 5 rounds of the Ascon internal permutation. We propose a categorization of the distinguishers into black-box and non-black-box to better differentiate them as they are often useful in different contexts. We also obtained limited-birthday distinguishers which represent currently the best known distinguishers for 4, 5 and 6 rounds under the category of non-black-box distinguishers. Leveraging again our tool, we have generated forgery attacks against both reduced-rounds Ascon-128 and Ascon-128a, improving over the best reported results at the time of writing. Finally, using the best differential characteristic we have found for 2 rounds, we could also improve a recent attack on round-reduced Ascon-Hash.
2021
TOSC
Improved guess-and-determine and distinguishing attacks on SNOW-V 📺
In this paper, we investigate the security of SNOW-V, demonstrating two guess-and-determine (GnD) attacks against the full version with complexities 2384 and 2378, respectively, and one distinguishing attack against a reduced variant with complexity 2303. Our GnD attacks use enumeration with recursion to explore valid guessing paths, and try to truncate as many invalid guessing paths as possible at early stages of the recursion by carefully designing the order of guessing. In our first GnD attack, we guess three 128-bit state variables, determine the remaining four according to four consecutive keystream words. We finally use the next three keystream words to verify the correct guess. The second GnD attack is similar but exploits one more keystream word as side information helping to truncate more guessing paths. Our distinguishing attack targets a reduced variant where 32-bit adders are replaced with exclusive-OR operations. The samples can be collected from short keystream sequences under different (key, IV) pairs. These attacks do not threaten SNOW-V, but provide more in-depth details for understanding its security and give new ideas for cryptanalysis of other ciphers.
2021
TOSC
Improved Preimage Attacks on 3-Round Keccak-224/256 📺
In this paper, we provide an improved method on preimage attacks of standard 3-round Keccak-224/256. Our method is based on the work by Li and Sun. Their strategy is to find a 2-block preimage instead of a 1-block one by constructing the first and second message blocks in two stages. Under this strategy, they design a new linear structure for 2-round Keccak-224/256 with 194 degrees of freedom left, which is able to construct the second message block with a complexity of 231/262. However, the bottleneck of this strategy is that the first stage needs much more expense than the second one. Therefore, we improve the first stage by using two techniques. The first technique is constructing multi-block messages rather than one-block message in the first stage, which can reach a better inner state. The second technique is setting restricting equations more efficiently, which can work in 3-round Keccak-256. As a result, the complexity of finding a preimage for 3-round Keccak-224/256 can be decreased from 238/281 to 232/265.
2021
TOSC
Improved Preimage Attacks on 4-Round Keccak-224/256 📺
This paper provides an improved preimage attack method on standard 4-round Keccak-224/256. The method is based on the work pioneered by Li and Sun, who design a linear structure of 2-round Keccak-224/256 with 194 degrees of freedom left. By partially linearizing 17 output bits through the last 2 rounds, they finally reach a complexity of 2207/2239 for searching a 4-round preimage. Yet under their strategy, those 17 bits are regarded as independent bits and the linearization costs a great amount of freedom. Inspired by their thoughts, we improve the partial linearization method where multiple output bits can reuse some common degrees of freedom. As a result, the complexity of preimage attack on 4-round Keccak-224/256 can be decreased to 2192/2218, which are both the best known theoretical preimage cryptanalysis so far. To support the theoretical analysis, we apply our strategy to a 64-bit partial preimage attack within practical complexity. It is remarkable that this partial linearization method can be directly applied if a better linear structure with more freedom left is proposed.
2021
TOSC
Improved Rectangle Attacks on SKINNY and CRAFT 📺
The boomerang and rectangle attacks are adaptions of differential cryptanalysis that regard the target cipher E as a composition of two sub-ciphers, i.e., E = E1 ∘ E0, to construct a distinguisher for E with probability p2q2 by concatenating two short differential trails for E0 and E1 with probability p and q respectively. According to the previous research, the dependency between these two differential characteristics has a great impact on the probability of boomerang and rectangle distinguishers. Dunkelman et al. proposed the sandwich attack to formalise such dependency that regards E as three parts, i.e., E = E1 ∘ Em ∘ E0, where Em contains the dependency between two differential trails, satisfying some differential propagation with probability r. Accordingly, the entire probability is p2q2r. Recently, Song et al. have proposed a general framework to identify the actual boundaries of Em and systematically evaluate the probability of Em with any number of rounds, and applied their method to accurately evaluate the probabilities of the best SKINNY’s boomerang distinguishers. In this paper, using a more advanced method to search for boomerang distinguishers, we show that the best previous boomerang distinguishers for SKINNY can be significantly improved in terms of probability and number of rounds. More precisely, we propose related-tweakey boomerang distinguishers for up to 19, 21, 23, and 25 rounds of SKINNY-64-128, SKINNY-128-256, SKINNY-64-192 and SKINNY-128-384 respectively, which improve the previous boomerang distinguishers of these variants of SKINNY by 1, 2, 1, and 1 round respectively. Based on the improved boomerang distinguishers for SKINNY, we provide related-tweakey rectangle attacks on 23 rounds of SKINNY-64-128, 24 rounds of SKINNY-128-256, 29 rounds of SKINNY-64-192, and 30 rounds of SKINNY-128-384. It is worth noting that our improved related-tweakey rectangle attacks on SKINNY-64-192, SKINNY-128-256 and SKINNY-128-384 can be directly applied for the same number of rounds of ForkSkinny-64-192, ForkSkinny-128-256 and ForkSkinny-128-384 respectively. CRAFT is another SKINNY-like tweakable block cipher for which we provide the security analysis against rectangle attack for the first time. As a result, we provide a 14-round boomerang distinguisher for CRAFT in the single-tweak model based on which we propose a single-tweak rectangle attack on 18 rounds of this cipher. Moreover, following the previous research regarding the evaluation of switching in multiple rounds of boomerang distinguishers, we also introduce new tools called Double Boomerang Connectivity Table (DBCT), LBCT⫤, and UBCT⊨ to evaluate the boomerang switch through the multiple rounds more accurately.
2021
TOSC
Improved Security Bound of (E/D)WCDM 📺
In CRYPTO’16, Cogliati and Seurin proposed a block cipher based nonce based MAC, called Encrypted Wegman-Carter with Davies-Meyer (EWCDM), that gives 2n/3 bit MAC security in the nonce respecting setting and n/2 bit security in the nonce misuse setting, where n is the block size of the underlying block cipher. However, this construction requires two independent block cipher keys. In CRYPTO’18, Datta et al. came up with a single-keyed block cipher based nonce based MAC, called Decrypted Wegman-Carter with Davies-Meyer (DWCDM), that also provides 2n/3 bit MAC security in the nonce respecting setting and n/2 bit security in the nonce misuse setting. However, the drawback of DWCDM is that it takes only 2n/3 bit nonce. In fact, authors have shown that DWCDM cannot achieve beyond the birthday bound security with n bit nonces. In this paper, we prove that DWCDM with 3n/4 bit nonces provides MAC security up to O(23n/4) MAC queries against all nonce respecting adversaries. We also improve the MAC bound of EWCDM from 2n/3 bit to 3n/4 bit. The backbone of these two results is a refined treatment of extended mirror theory that systematically estimates the number of solutions to a system of bivariate affine equations and non-equations, which we apply on the security proofs of the constructions to achieve 3n/4 bit security.
2021
TOSC
Linear Cryptanalyses of Three AEADs with GIFT-128 as Underlying Primitives 📺
This paper considers the linear cryptanalyses of Authenticated Encryptions with Associated Data (AEADs) GIFT-COFB, SUNDAE-GIFT, and HyENA. All of these proposals take GIFT-128 as underlying primitives. The automatic search with the Boolean satisfiability problem (SAT) method is implemented to search for linear approximations that match the attack settings concerning these primitives. With the newly identified approximations, we launch key-recovery attacks on GIFT-COFB, SUNDAE-GIFT, and HyENA when the underlying primitives are replaced with 16-round, 17-round, and 16-round versions of GIFT-128. The resistance of GIFT-128 against linear cryptanalysis is also evaluated. We present a 24-round key-recovery attack on GIFT-128 with a newly obtained 19-round linear approximation. We note that the attack results in this paper are far from threatening the security of GIFT-COFB, SUNDAE-GIFT, HyENA, and GIFT-128.
2021
TOSC
Maximums of the Additive Differential Probability of Exclusive-Or 📺
At FSE 2004, Lipmaa et al. studied the additive differential probability adp⊕(α,β → γ) of exclusive-or where differences α,β,γ ∈ Fn2 are expressed using addition modulo 2n. This probability is used in the analysis of symmetric-key primitives that combine XOR and modular addition, such as the increasingly popular Addition-Rotation-XOR (ARX) constructions. The focus of this paper is on maximal differentials, which are helpful when constructing differential trails. We provide the missing proof for Theorem 3 of the FSE 2004 paper, which states that maxα,βadp⊕(α,β → γ) = adp⊕(0,γ → γ) for all γ. Furthermore, we prove that there always exist either two or eight distinct pairs α,β such that adp⊕( α,β → γ) = adp⊕(0,γ → γ), and we obtain recurrence formulas for calculating adp⊕. To gain insight into the range of possible differential probabilities, we also study other properties such as the minimum value of adp⊕(0,γ → γ), and we find all γ that satisfy this minimum value.
2021
TOSC
Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon 📺
Being one of the winning algorithms of the CAESAR competition and currently a second round candidate of the NIST lightweight cryptography standardization project, the authenticated encryption scheme Ascon (designed by Dobraunig, Eichlseder, Mendel, and Schläffer) has withstood extensive self and third-party cryptanalysis. The best known attack on Ascon could only penetrate up to 7 (out of 12) rounds due to Li et al. (ToSC Vol I, 2017). However, it violates the data limit of 264 blocks per key specified by the designers. Moreover, the best known distinguishers of Ascon in the AEAD context reach only 6 rounds. To fill these gaps, we revisit the security of 7-round Ascon in the nonce-respecting setting without violating the data limit as specified in the design. First, we introduce a new superpoly-recovery technique named as partial polynomial multiplication for which computations take place between the so-called degree-d homogeneous parts of the involved Boolean functions for a 2d-dimensional cube. We apply this method to 7-round Ascon and present several key recovery attacks. Our best attack can recover the 128-bit secret key with a time complexity of about 2123 7-round Ascon permutations and requires 264 data and 2101 bits memory. Also, based on division properties, we identify several 60 dimensional cubes whose superpolies are constant zero after 7 rounds. We further improve the cube distinguishers for 4, 5 and 6 rounds. Although our results are far from threatening the security of full 12-round Ascon, they provide new insights in the security analysis of Ascon.
2021
TOSC
MOE: Multiplication Operated Encryption with Trojan Resilience 📺
In order to lower costs, the fabrication of Integrated Circuits (ICs) is increasingly delegated to offshore contract foundries, making them exposed to malicious modifications, known as hardware Trojans. Recent works have demonstrated that a strong form of Trojan-resilience can be obtained from untrusted chips by exploiting secret sharing and Multi-Party Computation (MPC), yet with significant cost overheads. In this paper, we study the possibility of building a symmetric cipher enabling similar guarantees in a more efficient manner. To reach this goal, we exploit a simple round structure mixing a modular multiplication and a multiplication with a binary matrix. Besides being motivated as a new block cipher design for Trojan resilience, our research also exposes the cryptographic properties of the modular multiplication, which is of independent interest.
2021
TOSC
On Length Independent Security Bounds for the PMAC Family 📺
At FSE 2017, Gaži et al. demonstrated a pseudorandom function (PRF) distinguisher (Gaži et al., ToSC 2016(2)) on PMAC with Ω(lq2/2n) advantage, where q, l, and n, denote the number of queries, maximum permissible query length (in terms of n-bit blocks), and block size of the underlying block cipher. This, in combination with the upper bounds of Ο(lq2/2n) (Minematsu and Matsushima, FSE 2007) and Ο(qσ/2n) (Nandi and Mandal, J. Mathematical Cryptology 2008(2)), resolved the long-standing problem of exact security of PMAC. Gaži et al. also showed that the dependency on l can be dropped (i.e. O(q2/2n) bound up to l ≤ 2n/2) for a simplified version of PMAC, called sPMAC, by replacing the Gray code-based masking in PMAC with any 4-wise independent universal hash-based masking. Recently, Naito proposed another variant of PMAC with two powering-up maskings (Naito, ToSC 2019(2)) that achieves l-free bound of O(q2/2n), provided l ≤ 2n/2. In this work, we first identify a flaw in the analysis of Naito’s PMAC variant that invalidates the security proof. Apparently, the flaw is not easy to fix under the existing proof setup. We then formulate an equivalent problem which must be solved in order to achieve l-free security bounds for this variant. Second, we show that sPMAC achieves O(q2/2n) bound for a weaker notion of universality as compared to the earlier condition of 4-wise independence. Third, we analyze the security of PMAC1 (a popular variant of PMAC) with a simple modification in the linear combination of block cipher outputs. We show that this simple modification of PMAC1 has tight security O(q2/2n) provided l ≤ 2n/4. Even if l < 2n/4, we still achieve same tight bound as long as total number of blocks in all queries is less than 22n/3.
2021
TOSC
On the Relationships between Different Methods for Degree Evaluation 📺
In this paper, we compare several non-tight degree evaluation methods i.e., Boura and Canteaut’s formula, Carlet’s formula as well as Liu’s numeric mapping and division property proposed by Todo, and hope to find the best one from these methodsfor practical applications. Specifically, for the substitution-permutation-network (SPN) ciphers, we first deeply explore the relationships between division property of an Sbox and its algebraic properties (e.g., the algebraic degree of its inverse). Based on these findings, we can prove theoretically that division property is never worse than Boura and Canteaut’s and Carlet’s formulas, and we also experimentally verified that the division property can indeed give a better bound than the latter two methods. In addition, for the nonlinear feedback shift registers (NFSR) based ciphers, according to the propagation of division property and the core idea of numeric mapping, we give a strict proof that the estimated degree using division property is never greater than that of numeric mapping. Moreover, our experimental results on Trivium and Kreyvium indicate the division property actually derives a much better bound than the numeric mapping. To the best of our knowledge, this is the first time to give a formal discussion on the relationships between division property and other degree evaluation methods, and we present the first theoretical proof and give the experimental verification to illustrate that division property is the optimal one among these methods in terms of the accuracy of the upper bounds on algebraic degree.
2021
TOSC
Orthros: A Low-Latency PRF 📺
We present Orthros, a 128-bit block pseudorandom function. It is designed with primary focus on latency of fully unrolled circuits. For this purpose, we adopt a parallel structure comprising two keyed permutations. The round function of each permutation is similar to Midori, a low-energy block cipher, however we thoroughly revise it to reduce latency, and introduce different rounds to significantly improve cryptographic strength in a small number of rounds. We provide a comprehensive, dedicated security analysis. For hardware implementation, Orthros achieves the lowest latency among the state-of-the-art low-latency primitives. For example, using the STM 90nm library, Orthros achieves a minimum latency of around 2.4 ns, while other constructions like PRINCE, Midori-128 and QARMA9-128- σ0 achieve 2.56 ns, 4.10 ns, 4.38 ns respectively.
2021
TOSC
Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives 📺
Energy efficiency is critical in battery-driven devices, and designing energyoptimal symmetric-key ciphers is one of the goals for the use of ciphers in such environments. In the paper by Banik et al. (IACR ToSC 2018), stream ciphers were identified as ideal candidates for low-energy solutions. One of the main conclusions of this paper was that Trivium, when implemented in an unrolled fashion, was by far the most energy-efficient way of encrypting larger quantity of data. In fact, it was shown that as soon as the number of databits to be encrypted exceeded 320 bits, Trivium consumed the least amount of energy on STM 90 nm ASIC circuits and outperformed the Midori family of block ciphers even in the least energy hungry ECB mode (Midori was designed specifically for energy efficiency).In this work, we devise the first heuristic energy model in the realm of stream ciphers that links the underlying algebraic topology of the state update function to the consumptive behaviour. The model is then used to derive a metric that exhibits a heavy negative correlation with the energy consumption of a broad range of stream cipher architectures, i.e., the families of Trivium-like, Grain-like and Subterranean-like constructions. We demonstrate that this correlation is especially pronounced for Trivium-like ciphers which leads us to establish a link between the energy consumption and the security guarantees that makes it possible to find several alternative energy-optimal versions of Trivium that meet the requirements but consume less energy. We present two such designs Trivium-LE(F) and Trivium-LE(S) that consume around 15% and 25% less energy respectively making them the to date most energy-efficient encryption primitives. They inherit the same security level as Trivium, i.e., 80-bit security. We further present Triad-LE as an energy-efficient variant satisfying a higher security level. The simplicity and wide applicability of our model has direct consequences for the conception of future hardware-targeted stream ciphers as for the first time it is possible to optimize for energy during the design phase. Moreover, we extend the reach of our model beyond plain encryption primitives and propose a novel energy-efficient message authentication code Trivium-LE-MAC.
2021
TOSC
Permutation Based EDM: An Inverse Free BBB Secure PRF 📺
In CRYPTO 2019, Chen et al. have initiated an interesting research direction in designing PRF based on public permutations. They have proposed two beyond the birthday bound secure n-bit to n-bit PRF constructions, i.e., SoEM22 and SoKAC21, which are built on public permutations, where n is the size of the permutation. However, both of their constructions require two independent instances of public permutations. In FSE 2020, Chakraborti et al. have proposed a single public permutation based n-bit to n-bit beyond the birthday bound secure PRF, which they refer to as PDMMAC. Although the construction is minimal in the number of permutations, it requires the inverse call of its underlying permutation in their design. Coming up with a beyond the birthday bound secure public permutation based n-bit to n-bit PRF with a single permutation and two forward calls was left as an open problem in their paper. In this work, we propose pEDM, a single permutation based n-bit to n-bit PRF with two calls that do not require invertibility of the permutation. We have shown that our construction is secured against all adaptive information-theoretic distinguishers that make roughly up to 22n/3 construction and primitive queries. Moreover, we have also shown a matching attack with similar query complexity that establishes the tightness of our security bound.
2021
TOSC
PLCrypto: A Symmetric Cryptographic Library for Programmable Logic Controllers 📺
Programmable Logic Controllers (PLCs) are control devices widely used in industrial automation. They can be found in critical infrastructures like power grids, water systems, nuclear plants, manufacturing systems, etc. This paper introduces PLCrypto, a software cryptographic library that implements lightweight symmetric cryptographic algorithms for PLCs using a standard PLC programming language called structured text (ST). To the best of our knowledge, PLCrypto is the first ST-based cryptographic library that is executable on commercial off-the-shelf PLCs. PLCrypto includes a wide range of commonly used algorithms, totaling ten algorithms, including one-way functions, message authentication codes, hash functions, block ciphers, and pseudo-random functions/generators. PLCrypto can be used to protect the confidentiality and integrity of data on PLCs without additional hardware or firmware modification. This paper also presents general optimization methodologies and techniques used in PLCrypto for implementing primitive operations like bit-shifting/rotation, substitution, and permutation. The optimization tricks we distilled from our practice can also guide future implementation of other computationheavy programs on PLCs. To demonstrate a use case of PLCrypto in practice, we further realize a cryptographic protocol called proof of aliveness as a case study. We benchmarked the algorithms and protocols in PLCrypto on a commercial PLC, Allen Bradley ControlLogix 5571, which is widely used in the real world. Also, we make our source codes publicly available, so plant operators can freely deploy our library in practice.
2021
TOSC
Power Yoga: Variable-Stretch Security of CCM for Energy-Efficient Lightweight IoT 📺
The currently ongoing NIST LWC project aims at identifying new standardization targets for lightweight authenticated encryption with associated data (AEAD) and (optionally) lightweight cryptographic hashing. NIST has deemed it important for performance and cost to be optimized on relevant platforms, especially for short messages. Reyhanitabar, Vaudenay and Vizár (Asiacrypt 2016) gave a formal treatment for security of nonce-based AEAD with variable stretch, i.e., when the length of the authentication tag is changed between encryptions without changing the key. They argued that AEAD supporting variable stretch is of practical interest for constrained applications, especially low-power devices operated by battery, due to the ability to flexibly trade communication overhead and level of integrity.In this work, we investigate this hypothesis with affirmative results. We present vCCM, a variable-stretch variant of the standard CCM and prove it is secure when used with variable stretch. We then experimentally measure the energy consumption of a real-world wireless sensor node when encrypting and sending messages with vCCM and CCM, respectively. Our projections show that the flexible trade of integrity level and ciphertext expansion can lead up to 21% overall energy consumption reduction in certain scenarios. As vCCM is obtained from the widely-used CCM by a black-box transformation, allowing any existing CCM implementations to be reused as-is, our results can be immediately put to use in practice. vCCM is all the more relevant because neither the NIST LWC project, nor any of the candidates give a consideration for the support of variable stretch and the related integrity-overhead trade-off.
2021
TOSC
2021
TOSC
Provable Security of SP Networks with Partial Non-Linear Layers 📺
Motivated by the recent trend towards low multiplicative complexity blockciphers (e.g., Zorro, CHES 2013; LowMC, EUROCRYPT 2015; HADES, EUROCRYPT 2020; MALICIOUS, CRYPTO 2020), we study their underlying structure partial SPNs, i.e., Substitution-Permutation Networks (SPNs) with parts of the substitution layer replaced by an identity mapping, and put forward the first provable security analysis for such partial SPNs built upon dedicated linear layers. For different instances of partial SPNs using MDS linear layers, we establish strong pseudorandom security as well as practical provable security against impossible differential attacks. By extending the well-established MDS code-based idea, we also propose the first principled design of linear layers that ensures optimal differential propagation. Our results formally confirm the conjecture that partial SPNs achieve the same security as normal SPNs while consuming less non-linearity, in a well-established framework.
2021
TOSC
Provably Quantum-Secure Tweakable Block Ciphers 📺
Recent results on quantum cryptanalysis show that some symmetric key schemes can be broken in polynomial time even if they are proven to be secure in the classical setting. Liskov, Rivest, and Wagner showed that secure tweakable block ciphers can be constructed from secure block ciphers in the classical setting. However, Kaplan et al. showed that their scheme can be broken by polynomial time quantum superposition attacks, even if underlying block ciphers are quantum-secure. Since then, it remains open if there exists a mode of block ciphers to build quantum-secure tweakable block ciphers. This paper settles the problem in the reduction-based provable security paradigm. We show the first design of quantum-secure tweakable block ciphers based on quantum-secure block ciphers, and present a provable security bound. Our construction is simple, and when instantiated with a quantum-secure n-bit block cipher, it is secure against attacks that query arbitrary quantum superpositions of plaintexts and tweaks up to O(2n/6) quantum queries. Our security proofs use the compressed oracle technique introduced by Zhandry. More precisely, we use an alternative formalization of the technique introduced by Hosoyamada and Iwata.
2021
TOSC
Proving Resistance Against Infinitely Long Subspace Trails: How to Choose the Linear Layer 📺
Designing cryptographic permutations and block ciphers using a substitutionpermutation network (SPN) approach where the nonlinear part does not cover the entire state has recently gained attention due to favorable implementation characteristics in various scenarios.For word-oriented partial SPN (P-SPN) schemes with a fixed linear layer, our goal is to better understand how the details of the linear layer affect the security of the construction. In this paper, we derive conditions that allow us to either set up or prevent attacks based on infinitely long truncated differentials with probability 1. Our analysis is rather broad compared to earlier independent work on this problem since we consider (1) both invariant and non-invariant/iterative trails, and (2) trails with and without active S-boxes.For these cases, we provide rigorous sufficient and necessary conditions for the matrix that defines the linear layer to prevent the analyzed attacks. On the practical side, we present a tool that can determine whether a given linear layer is vulnerable based on these results. Furthermore, we propose a sufficient condition for the linear layer that, if satisfied, ensures that no infinitely long truncated differential exists. This condition is related to the degree and the irreducibility of the minimal polynomial of the matrix that defines the linear layer. Besides P-SPN schemes, our observations may also have a crucial impact on the Hades design strategy, which mixes rounds with full S-box layers and rounds with partial S-box layers.
2021
TOSC
Quantum Free-Start Collision Attacks on Double Block Length Hashing with Round-Reduced AES-256 📺
Recently, Hosoyamada and Sasaki (EUROCRYPT 2020), and Xiaoyang Dong et al. (ASIACRYPT 2020) proposed quantum collision attacks against AES-like hashing modes AES-MMO and AES-MP. Their collision attacks are based on the quantum version of the rebound attack technique exploiting the differential trails whose probabilities are too low to be useful in the classical setting but large enough in the quantum setting. In this work, we present dedicated quantum free-start collision attacks on Hirose’s double block length compression function instantiated with AES-256, namely HCF-AES-256. The best publicly known classical attack against HCF-AES-256 covers up to 9 out of 14 rounds. We present a new 10-round differential trail for HCF-AES-256 with probability 2−160, and use it to find collisions with a quantum version of the rebound attack. Our attack succeeds with a time complexity of 285.11 and requires 216 qRAM in the quantum-attack setting, where an attacker can make only classical queries to the oracle and perform offline computations. We also present a quantum free-start collision attack on HCF-AES-256 with a time complexity of 286.07 which outperforms Chailloux, Naya-Plasencia, and Schrottenloher’s generic quantum collision attack (ASIACRYPT 2017) in a model when large qRAM is not available.
2021
TOSC
Resistance of SNOW-V against Fast Correlation Attacks 📺
SNOW-V is a new member in the SNOW family of stream ciphers, hoping to be competitive in the 5G mobile communication system. In this paper, we study the resistance of SNOW-V against bitwise fast correlation attacks by constructing bitwise linear approximations. First, we propose and summarize some efficient algorithms using the slice-like techniques to compute the bitwise linear approximations of certain types of composition functions composed of basic operations like ⊞, ⊕, Permutation, and S-box, which have been widely used in word-oriented stream ciphers such as SNOW-like ciphers. Then, using these algorithms, we find a number of stronger linear approximations for the FSM of the two variants of SNOW-V given in the design document, i.e., SNOW-V σ0 and SNOW-V⊞8, ⊞8. For SNOW-V σ0, where there is no byte-wise permutation, we find some bitwise linear approximations of the FSM with the SEI (Squared Euclidean Imbalance) around 2−37.34 and mount a bitwise fast correlation attack with the time complexity 2251.93 and memory complexity 2244, given 2103.83 keystream outputs, which improves greatly the results in the design document. For SNOW-V⊞8, ⊞8, where both of the two 32-bit adders in the FSM are replaced by 8-bit adders, we find our best bitwise linear approximations of the FSM with the SEI 2−174.14, while the best byte-wise linear approximation in the design document of SNOW-V has the SEI 2−214.80. Finally, we study the security of a closer variant of SNOW-V, denoted by SNOW-V⊞32, ⊞8, where only the 32-bit adder used for updating the first register is replaced by the 8-bit adder, while everything else remains identical. For SNOW-V⊞32, ⊞8, we derive many mask tuples yielding the bitwise linear approximations of the FSM with the SEI larger than 2−184. Using these linear approximations, we mount a fast correlation attack with the time complexity 2377.01 and a memory complexity 2363, given 2253.73 keystream outputs. Note that neither of our attack threatens the security of SNOW-V. We hope our research could further help in understanding bitwise linear approximation attacks and also the structure of SNOW-like stream ciphers.
2021
TOSC
Rocca: An Efficient AES-based Encryption Scheme for Beyond 5G 📺
In this paper, we present an AES-based authenticated-encryption with associated-data scheme called Rocca, with the purpose to reach the requirements on the speed and security in 6G systems. To achieve ultra-fast software implementations, the basic design strategy is to take full advantage of the AES-NI and SIMD instructions as that of the AEGIS family and Tiaoxin-346. Although Jean and Nikolić have generalized the way to construct efficient round functions using only one round of AES (aesenc) and 128-bit XOR operation and have found several efficient candidates, there still seems to exist potential to further improve it regarding speed and state size. In order to minimize the critical path of one round, we remove the case of applying both aesenc and XOR in a cascade way for one round. By introducing a cost-free block permutation in the round function, we are able to search for candidates in a larger space without sacrificing the performance. Consequently, we obtain more efficient constructions with a smaller state size than candidates by Jean and Nikolić. Based on the newly-discovered round function, we carefully design the corresponding AEAD scheme with 256-bit security by taking several reported attacks on the AEGIS family and Tiaxion-346 into account. Our AEAD scheme can reach 138Gbps which is 4 times faster than the AEAD scheme of SNOW-V. Rocca is also much faster than other efficient schemes with 256-bit key length, e.g. AEGIS-256 and AES-256-GCM. As far as we know, Rocca is the first dedicated cryptographic algorithm targeting 6 systems, i.e., 256-bit key length and the speed of more than 100 Gbps.
2021
TOSC
Statistical Model of Correlation Difference and Related-Key Linear Cryptanalysis 📺
The goal of this work is to propose a related-key model for linear cryptanalysis. We start by giving the mean and variance of the difference of sampled correlations of two Boolean functions when using the same sample of inputs to compute both correlations. This result is further extended to determine the mean and variance of the difference of correlations of a pair of Boolean functions taken over a random data sample of fixed size and over a random pair of Boolean functions. We use the properties of the multinomial distribution to achieve these results without independence assumptions. Using multivariate normal approximation of the multinomial distribution we obtain that the distribution of the difference of related-key correlations is approximately normal. This result is then applied to existing related-key cryptanalyses. We obtain more accurate right-key and wrong-key distributions and remove artificial assumptions about independence of sampled correlations. We extend this study to using multiple linear approximations and propose a Χ2-type statistic, which is proven to be Χ2 distributed if the linear approximations are independent. We further examine this statistic for multidimensional linear approximation and discuss why removing the assumption about independence of linear approximations does not work in the related-key setting the same way as in the single-key setting.
2021
TOSC
Towards Key-recovery-attack Friendly Distinguishers: Application to GIFT-128 📺
When analyzing a block cipher, the first step is to search for some valid distinguishers, for example, the differential trails in the differential cryptanalysis and the linear trails in the linear cryptanalysis. A distinguisher is advantageous if it can be utilized to attack more rounds and the amount of the involved key bits during the key-recovery process is small, as this leads to a long attack with a low complexity. In this article, we propose a two-step strategy to search for such advantageous distinguishers. This strategy is inspired by the intuition that if a differential is advantageous only when some properties are satisfied, then we can predefine some constraints describing these properties and search for the differentials in the small set.As applications, our strategy is used to analyze GIFT-128, which was proposed in CHES 2017. Based on some 20-round differentials, we give the first 27-round differential attack on GIFT-128, which covers one more round than the best previous result. Also, based on two 17-round linear trails, we give the first linear hull attack on GIFT-128, which covers 22 rounds. In addition, we also give some results on two GIFT-128 based AEADs GIFT-COFB and SUNDAE-GIFT.
2021
TOSC
Weak Keys in Reduced AEGIS and Tiaoxin 📺
AEGIS-128 and Tiaoxin-346 (Tiaoxin for short) are two AES-based primitives submitted to the CAESAR competition. Among them, AEGIS-128 has been selected in the final portfolio for high-performance applications, while Tiaoxin is a third-round candidate. Although both primitives adopt a stream cipher based design, they are quite different from the well-known bit-oriented stream ciphers like Trivium and the Grain family. Their common feature consists in the round update function, where the state is divided into several 128-bit words and each word has the option to pass through an AES round or not. During the 6-year CAESAR competition, it is surprising that for both primitives there is no third-party cryptanalysis of the initialization phase. Due to the similarities in both primitives, we are motivated to investigate whether there is a common way to evaluate the security of their initialization phases. Our technical contribution is to write the expressions of the internal states in terms of the nonce and the key by treating a 128-bit word as a unit and then carefully study how to simplify these expressions by adding proper conditions. As a result, we find that there are several groups of weak keys with 296 keys each in 5-round AEGIS-128 and 8-round Tiaoxin, which allows us to construct integral distinguishers with time complexity 232 and data complexity 232. Based on the distinguisher, the time complexity to recover the weak key is 272 for 5-round AEGIS-128. However, the weak key recovery attack on 8-round Tiaoxin will require the usage of a weak constant occurring with probability 2−32. All the attacks reach half of the total number of initialization rounds. We expect that this work can advance the understanding of the designs similar to AEGIS and Tiaoxin.