International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Papers from EUROCRYPT 2021

Year
Venue
Title
2021
EUROCRYPT
Large Scale, Actively Secure Computation from LPN and Free-XOR Garbled Circuits
Whilst secure multiparty computation (MPC) based on garbled circuits is concretely efficient for a small number of parties $n$, the gap between the complexity of practical protocols, which is $O(n^2)$ per party, and the theoretical complexity, which is $O(n)$ per party, is prohibitive for large values of $n$. In order to bridge this gap, Ben-Efraim, Lindell and Omri (ASIACRYPT 2017) introduced a garbled-circuit-based MPC protocol with an almost-practical pre-processing, yielding $O(n)$ complexity per party. However, this protocol is only passively secure and does not support the free-XOR technique by Kolesnikov and Schneider (ICALP 2008), on which almost all practical garbled-circuit-based protocols rely on for their efficiency. In this work, to further bridge the gap between theory and practice, we present a new $n$-party garbling technique based on a new variant of standard LPN-based encryption. Using this approach we can describe two new garbled-circuit based protocols, which have practical evaluation phases. Both protocols are in the preprocessing model, have $O(n)$ complexity per party, are actively secure and support the free-XOR technique. The first protocol tolerates full threshold corruption and ensures the garbled circuit contains no adversarially introduced errors, using a rather expensive garbling phase. The second protocol assumes that at least $n/c$ of the parties are honest (for an arbitrary fixed value $c$) and allows a significantly lighter preprocessing, at the cost of a small sacrifice in online efficiency. We demonstrate the practicality of our approach with an implementation of the evaluation phase using different circuits. We show that like the passively-secure protocol of Ben-Efraim, Lindell and Omri, our approach starts to improve upon other practical protocols with $O(n^2)$ complexity when the number of parties is around $100$.
2021
EUROCRYPT
Pre-Computation Scheme of Window $\tau$NAF for Koblitz Curves Revisited
Let $E_a/ \mathbb{F}_{2}: y^2+xy=x^3+ax^2+1$ be a Koblitz curve. The window $\tau$-adic non-adjacent form (window $\tau$NAF) is currently the standard representation system to perform scalar multiplications on $E_a/ \mathbb{F}_{2^m}$ utilizing the Frobenius map $\tau$. This work focuses on the pre-computation part of scalar multiplication. We first introduce $\mu\bar{\tau}$-operations where $\mu=(-1)^{1-a}$ and $\bar{\tau}$ is the complex conjugate of $\tau$. Efficient formulas of $\mu\bar{\tau}$-operations are then derived and used in a novel pre-computation scheme. Our pre-computation scheme requires $6${\bf M}$+6${\bf S}, $18${\bf M}$+17${\bf S}, $44${\bf M}$+32${\bf S}, and $88${\bf M}$+62${\bf S} ($a=0$) and $6${\bf M}$+6${\bf S}, $19${\bf M}$+17${\bf S}, $46${\bf M}$+32${\bf S}, and $90${\bf M}$+62${\bf S} ($a=1$) for window $\tau$NAF with widths from $4$ to $7$ respectively. It is about two times faster, compared to the state-of-the-art technique of pre-computation in the literature. The impact of our new efficient pre-computation is also reflected by the significant improvement of scalar multiplication. Traditionally, window $\tau$NAF with width at most $6$ is used to achieve the best scalar multiplication. Because of the dramatic cost reduction of the proposed pre-computation, we are able to increase the width for window $\tau$NAF to $7$ for a better scalar multiplication. This indicates that the pre-computation part becomes more important in performing scalar multiplication. With our efficient pre-computation and the new window width, our scalar multiplication runs in at least 85.2\% the time of Kohel's work (Eurocrypt'2017) combining the best previous pre-computation. Our results push the scalar multiplication of Koblitz curves, a very well-studied and long-standing research area, to a significant new stage.
2021
EUROCRYPT
A 2^{n/2}-Time Algorithm for \sqrt{n}-SVP and \sqrt{n}-Hermite SVP, and an Improved Time-Approximation Tradeoff for (H)SVP
We show a 2^{n/2+o(n)}-time algorithm that, given as input a basis of a lattice $\lat \subset \R^n$, finds a (non-zero) vector in whose length is at most $\widetilde{O}(\sqrt{n})\cdot \min\{\lambda_1(\lat), \det(\lat)^{1/n}\}$, where $\lambda_1(\lat)$ is the length of a shortest non-zero lattice vector and $\det(\lat)$ is the lattice determinant. Minkowski showed that $\lambda_1(\lat) \leq \sqrt{n} \det(\lat)^{1/n}$ and that there exist lattices with $\lambda_1(\lat) \geq \Omega(\sqrt{n}) \cdot \det(\lat)^{1/n}$, so that our algorithm finds vectors that are as short as possible relative to the determinant (up to a polylogarithmic factor). The main technical contribution behind this result is new analysis of (a simpler variant of) a 2^{n/2 + o(n)}-time algorithm from [ADRS15], which was only previously known to solve less useful problems. To achieve this, we rely crucially on the ``reverse Minkowski theorem'' (conjectured by Dadush [DR16] and proven by [RS17]), which can be thought of as a partial converse to the fact that $\lambda_1(\lat) \leq \sqrt{n} \det(\lat)^{1/n}$. Previously, the fastest known algorithm for finding such a vector was the 2^{0.802n + o(n)}-time algorithm due to [LWXZ11], which actually found a non-zero lattice vector with length $O(1) \cdot \lambda_1(\lat)$. Though we do not show how to find lattice vectors with this length in time $2^{n/2+o(n)}$, we do show that our algorithm suffices for the most important application of such algorithms: basis reduction. In particular, we show a modified version of Gama and Nguyen's slide-reduction algorithm [GN08], which can be combined with the algorithm above to improve the time-length tradeoff for shortest-vector algorithms in nearly all regimes---including the regimes relevant to cryptography.
2021
EUROCRYPT
Rotational Cryptanalysis From a Differential-Linear Perspective - Practical Distinguishers for Round-reduced FRIET, Xoodoo, and Alzette
The differential-linear attack, combining the power of the two most effective techniques for symmetric-key cryptanalysis, was proposed by Langford and Hellman at CRYPTO 1994. From the exact formula for evaluating the bias of a differential-linear distinguisher (JoC2017), to the differential-linear connectivity table (DLCT) technique for dealing with the dependencies in the switch between the differential and linear parts (EUROCRYPT 2019), and to the improvements in the context of cryptanalysis of ARX primitives (CRYPTO 2020), we have seen significant development of the differential-linear attack during the last four years. In this work, we further extend this framework by replacing the differential part of the attack by rotational-xor differentials. Along the way, we establish the theoretical link between the rotational-xor differential and linear approximations, revealing that it is nontrivial to directly apply the closed formula for the bias of ordinary differentiallinear attack to rotational differential-linear cryptanalysis. We then revisit the rotational cryptanalysis from the perspective of differentiallinear cryptanalysis and generalize Morawiecki et al.’s technique for analyzing Keccak, which leads to a practical method for estimating the bias of a (rotational) differential-linear distinguisher in the special case where the output linear mask is a unit vector. Finally, we apply the rotational differential-linear technique to the permutations involved in FRIET, Xoodoo, Alzette, and SipHash. This gives significant improvements over existing cryptanalytic results, or offers explanations for previous experimental distinguishers without a theoretical foundation. To confirm the validity of our analysis, all distinguishers with practical complexities are verified experimentally.
2021
EUROCRYPT
On the Security of Homomorphic Encryption on Approximate Numbers
We present passive attacks against CKKS, the homomorphic encryption scheme for arithmetic on approximate numbers presented at Asiacrypt 2017. The attack is both theoretically efficient (running in expected polynomial time) and very practical, leading to complete key recovery with high probability and very modest running times. We implemented and tested the attack against major open source homomorphic encryption libraries, including HEAAN, SEAL, HElib and PALISADE, and when computing several functions that often arise in applications of the CKKS scheme to machine learning on encrypted data, like mean and variance computations, and approximation of logistic and exponential functions using their Maclaurin series. The attack shows that the traditional formulation of IND-CPA security (or indistinguishability against chosen plaintext attacks) achieved by CKKS does not adequately captures security against passive adversaries when applied to approximate encryption schemes, and that a different, stronger definition is required to evaluate the security of such schemes. We provide a solid theoretical basis for the security evaluation of homomorphic encryption on approximate numbers (against passive attacks) by proposing new definitions, that naturally extend the traditional notion of IND-CPA security to the approximate computation setting. We propose both indistinguishability-based and simulation-based variants, as well as restricted versions of the definitions that limit the order and number of adversarial queries (as may be enforced by some applications). We prove implications and separations among different definitional variants, and discuss possible modifications to CKKS that may serve as a countermeasure to our attacks.